Commutativity of compact selfadjoint operators
Studia Mathematica, Tome 112 (1995) no. 2, p. 109.

Voir la notice de l'article dans European Digital Mathematics Library

The relationship between the joint spectrum γ(A) of an n-tuple A = ( A 1 , . . . , A n ) of selfadjoint operators and the support of the corresponding Weyl calculus T(A) : f ↦ f(A) is discussed. It is shown that one always has γ(A) ⊂ supp (T(A)). Moreover, when the operators are compact, equality occurs if and only if the operators A j mutually commute. In the non-commuting case the equality fails badly: While γ(A) is countable, supp(T(A)) has to be an uncountable set. An example is given showing that, for non-compact operators, coincidence of γ(A) and supp (T(A)) no longer implies commutativity of the set A i .
Classification : 47A13, 47A25, 47A60, 47B15
Mots-clés : joint spectrum, Weyl calculus, non-compact operators
@article{STUMA_1995__112_2_216141,
     author = {G. Greiner and W. Ricker},
     title = {Commutativity of compact selfadjoint operators},
     journal = {Studia Mathematica},
     pages = {109},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {1995},
     zbl = {0817.47004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216141/}
}
TY  - JOUR
AU  - G. Greiner
AU  - W. Ricker
TI  - Commutativity of compact selfadjoint operators
JO  - Studia Mathematica
PY  - 1995
SP  - 109
VL  - 112
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216141/
LA  - en
ID  - STUMA_1995__112_2_216141
ER  - 
%0 Journal Article
%A G. Greiner
%A W. Ricker
%T Commutativity of compact selfadjoint operators
%J Studia Mathematica
%D 1995
%P 109
%V 112
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216141/
%G en
%F STUMA_1995__112_2_216141
G. Greiner; W. Ricker. Commutativity of compact selfadjoint operators. Studia Mathematica, Tome 112 (1995) no. 2, p. 109. https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216141/