Shuffles of Min.
Stochastica, Tome 13 (1992) no. 1, p. 61.
Voir la notice de l'article dans European Digital Mathematics Library
Copulas are functions which join the margins to produce a joint distribution function. A special class of copulas called shuffles of Min is shown to be dense in the collection of all copulas. Each shuffle of Min is interpreted probabilistically. Using the above-mentioned results, it is proved that the joint distribution of any two continuously distributed random variables X and Y can be approximated uniformly, arbitrarily closely by the joint distribution of another pair X* and Y* each of which is almost surely an invertible function of the other such that X and X* are identically distributed as are Y and Y*. The preceding results shed light on A. Rényi's axioms for a measure of dependence and a modification of those axioms as given by B. Schweizer and E.F. Wolff.
Classification :
62H05, 62H20, 62E10, 60B10
Mots-clés : Función cópula, Dependencia estocástica, Teoría de la distribución, Distribución marginal, doubly stochastic measure, functional dependence, stochastic independence, copulas, measure of dependence
Mots-clés : Función cópula, Dependencia estocástica, Teoría de la distribución, Distribución marginal, doubly stochastic measure, functional dependence, stochastic independence, copulas, measure of dependence
@article{STO_1992__13_1_39282, author = {Piotr Mikusinski and Howard Sherwood and Michael D. Taylor}, title = {Shuffles of {Min.}}, journal = {Stochastica}, pages = {61}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {1992}, mrnumber = {MR1197328}, zbl = {0768.60017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39282/} }
Piotr Mikusinski; Howard Sherwood; Michael D. Taylor. Shuffles of Min.. Stochastica, Tome 13 (1992) no. 1, p. 61. https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39282/