Una classe di soluzioni con zeri dell'equazione funzionale di Aleksandrov.
Stochastica, Tome 13 (1992) no. 1, p. 23.
Voir la notice de l'article dans European Digital Mathematics Library
In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.
Classification :
83C99, 03E20, 39B22
Mots-clés : Ecuaciones funcionales, Generalización, Prolongación de soluciones, Aleksandrov functional equation, functional equations on sets, increasing sequences, interior, bounded from below, zeros, border, cone, chronogeometry, general relativity
Mots-clés : Ecuaciones funcionales, Generalización, Prolongación de soluciones, Aleksandrov functional equation, functional equations on sets, increasing sequences, interior, bounded from below, zeros, border, cone, chronogeometry, general relativity
@article{STO_1992__13_1_39278, author = {Constanza Borelli Forti}, title = {Una classe di soluzioni con zeri dell'equazione funzionale di {Aleksandrov.}}, journal = {Stochastica}, pages = {23}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {1992}, mrnumber = {MR1197324}, zbl = {0770.39005}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39278/} }
Constanza Borelli Forti. Una classe di soluzioni con zeri dell'equazione funzionale di Aleksandrov.. Stochastica, Tome 13 (1992) no. 1, p. 23. https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39278/