Weak infinitesimal operators and stochastic differential games.
Stochastica, Tome 13 (1992) no. 1, p. 5.
Voir la notice de l'article dans European Digital Mathematics Library
This article considers the problem of finding the optimal strategies in stochastic differential games with two players, using the weak infinitesimal operator of process xi the solution of d(xi) = f(xi,t,u1,u2)dt + sigma(xi,t,u1,u2)dW. For two-person zero-sum stochastic games we formulate the minimax solution; analogously, we perform the solution for coordination and non-cooperative stochastic differential games.
Classification :
60G35, 91A05, 91A15, 91A23, 91A60
Mots-clés : Juegos estocásticos, Juegos diferenciales, Proceso de Markov, Criterio minimax, Estrategias óptimas, Operadores infinitesimales, Markov processes, minimax principle, optimal strategies in stochastic differential games, weak infinitesimal operator, two-person zero-sum stochastic games
Mots-clés : Juegos estocásticos, Juegos diferenciales, Proceso de Markov, Criterio minimax, Estrategias óptimas, Operadores infinitesimales, Markov processes, minimax principle, optimal strategies in stochastic differential games, weak infinitesimal operator, two-person zero-sum stochastic games
@article{STO_1992__13_1_39276, author = {Ram\'on Ardanuy and A. Alcal\'a}, title = {Weak infinitesimal operators and stochastic differential games.}, journal = {Stochastica}, pages = {5}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {1992}, mrnumber = {MR1197322}, zbl = {0769.90086}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39276/} }
Ramón Ardanuy; A. Alcalá. Weak infinitesimal operators and stochastic differential games.. Stochastica, Tome 13 (1992) no. 1, p. 5. https://geodesic-test.mathdoc.fr/item/STO_1992__13_1_39276/