Convex transformations with Banach lattice range.
Stochastica, Tome 11 (1987) no. 1, p. 13.

Voir la notice de l'article dans European Digital Mathematics Library

A closed epigraph theorem for Jensen-convex mappings with values in Banach lattices with a strong unit is established. This allows one to reduce the examination of continuity of vector valued transformations to the case of convex real functionals. In particular, it is shown that a weakly continuous Jensen-convex mapping is continuous. A number of corollaries follow; among them, a characterization of continuous vector-valued convex transformations is given that answers a question raised by Ih-Ching Hau.
Classification : 46B42, 46A40, 26A51
Mots-clés : Espacios de Banach, Funciones convexas, Funciones continuas, closed epigraph theorem, strong unit, Jensen-convex, convex analogue of the Banach closed graph theorem, real linear topological Baire space, Banach lattice with strong unit
@article{STO_1987__11_1_38975,
     author = {Roman Ger},
     title = {Convex transformations with {Banach} lattice range.},
     journal = {Stochastica},
     pages = {13},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1987},
     mrnumber = {MR0970259},
     zbl = {0675.46012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STO_1987__11_1_38975/}
}
TY  - JOUR
AU  - Roman Ger
TI  - Convex transformations with Banach lattice range.
JO  - Stochastica
PY  - 1987
SP  - 13
VL  - 11
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STO_1987__11_1_38975/
LA  - en
ID  - STO_1987__11_1_38975
ER  - 
%0 Journal Article
%A Roman Ger
%T Convex transformations with Banach lattice range.
%J Stochastica
%D 1987
%P 13
%V 11
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STO_1987__11_1_38975/
%G en
%F STO_1987__11_1_38975
Roman Ger. Convex transformations with Banach lattice range.. Stochastica, Tome 11 (1987) no. 1, p. 13. https://geodesic-test.mathdoc.fr/item/STO_1987__11_1_38975/