A closure condition which is equivalent to the Thomsen condition in quasigroups.
Stochastica, Tome 7 (1983) no. 1, p. 11.

Voir la notice de l'article dans European Digital Mathematics Library

In this note it is shown that the closure condition, X1Y2 = X2Y1, X1Y4 = X2Y3, X3Y3 = X4Y1 --> X4Y2 = X3Y4, (and its dual) is equivalent to the Thomsen condition in quasigroups but not in general. Conditions are also given under which groupoids satisfying it are principal homotopes of cancellative, abelian semigroups, or abelian groups.
Classification : 20N05
Mots-clés : Grupoides, Teoría de grupos, Thomsen condition, quasigroups, groupoids, principal homotopes
@article{STO_1983__7_1_38875,
     author = {M. A. Taylor},
     title = {A closure condition which is equivalent to the {Thomsen} condition in quasigroups.},
     journal = {Stochastica},
     pages = {11},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1983},
     mrnumber = {MR0766887},
     zbl = {0572.20058},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STO_1983__7_1_38875/}
}
TY  - JOUR
AU  - M. A. Taylor
TI  - A closure condition which is equivalent to the Thomsen condition in quasigroups.
JO  - Stochastica
PY  - 1983
SP  - 11
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STO_1983__7_1_38875/
LA  - en
ID  - STO_1983__7_1_38875
ER  - 
%0 Journal Article
%A M. A. Taylor
%T A closure condition which is equivalent to the Thomsen condition in quasigroups.
%J Stochastica
%D 1983
%P 11
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STO_1983__7_1_38875/
%G en
%F STO_1983__7_1_38875
M. A. Taylor. A closure condition which is equivalent to the Thomsen condition in quasigroups.. Stochastica, Tome 7 (1983) no. 1, p. 11. https://geodesic-test.mathdoc.fr/item/STO_1983__7_1_38875/