Voir la notice de l'acte provenant de la source Numdam
@article{SPS_1982__S16__217_0, author = {Darling, R. W. R.}, title = {Martingales in manifolds. {Definition,} examples and behaviour under maps}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {217--236}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {S16}, year = {1982}, mrnumber = {658727}, zbl = {0482.58035}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/SPS_1982__S16__217_0/} }
TY - JOUR AU - Darling, R. W. R. TI - Martingales in manifolds. Definition, examples and behaviour under maps JO - Séminaire de probabilités de Strasbourg PY - 1982 SP - 217 EP - 236 VL - S16 PB - Springer - Lecture Notes in Mathematics UR - https://geodesic-test.mathdoc.fr/item/SPS_1982__S16__217_0/ LA - en ID - SPS_1982__S16__217_0 ER -
%0 Journal Article %A Darling, R. W. R. %T Martingales in manifolds. Definition, examples and behaviour under maps %J Séminaire de probabilités de Strasbourg %D 1982 %P 217-236 %V S16 %I Springer - Lecture Notes in Mathematics %U https://geodesic-test.mathdoc.fr/item/SPS_1982__S16__217_0/ %G en %F SPS_1982__S16__217_0
Darling, R. W. R. Martingales in manifolds. Definition, examples and behaviour under maps. Séminaire de probabilités de Strasbourg, Tome S16 (1982), pp. 217-236. https://geodesic-test.mathdoc.fr/item/SPS_1982__S16__217_0/
[1] Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207-228 | Zbl | mathdoc-id
, , & .[2] Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear. | MR
[3] A Girsanov theorem for diffusions on a manifold (1981) To appear.
[4] A report on harmonic maps. Bull. London Math. Soc. 10 (1978), pp. 1-68. | Zbl
&[5] Geometry of manifolds of maps. J.Differential Geometry I (1967), 169-194 | Zbl | MR
[6] Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28.2 (1978), 107-144 | Zbl | MR | mathdoc-id
[7] Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier 25 (1975) 215-235 | Zbl | mathdoc-id
& ,[8] A mapping of Riemannian manifolds which preserves harmonic functions. J.Math. Kyoto Univ 19-2 (1979) 215-229 | Zbl | MR
,[9] Brownian motion and a generalized little Picard theorem. To appear 1982. | Zbl | MR
[10] Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969)
, &[11] Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, Springer LNM 850, pp. 44-102. | Zbl | MR | mathdoc-id
[12] A differential geometric formalism for the Ito calculus. Springer LNM 851 (1981) 256-270 | Zbl | MR
[13] Semi-martingales sur des variétés, et martingales conformes. (1980) Springer LNM 780. | Zbl | MR