Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 11, 10 p.

Voir la notice de l'acte provenant de la source Numdam

We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution u(x,t), the graph xT(x) of its blow-up points and 𝒮 the set of all characteristic points and show that 𝒮 is locally finite. Finally, given x0𝒮, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that T(x) forms a corner of angle π2.

Merle, Frank 1 ; Zaag, Hatem 2

1 Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France
2 Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France
@article{SEDP_2009-2010____A11_0,
     author = {Merle, Frank and Zaag, Hatem},
     title = {Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:11},
     pages = {1--10},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/SEDP_2009-2010____A11_0/}
}
TY  - JOUR
AU  - Merle, Frank
AU  - Zaag, Hatem
TI  - Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:11
PY  - 2009-2010
SP  - 1
EP  - 10
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://geodesic-test.mathdoc.fr/item/SEDP_2009-2010____A11_0/
LA  - en
ID  - SEDP_2009-2010____A11_0
ER  - 
%0 Journal Article
%A Merle, Frank
%A Zaag, Hatem
%T Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:11
%D 2009-2010
%P 1-10
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://geodesic-test.mathdoc.fr/item/SEDP_2009-2010____A11_0/
%G en
%F SEDP_2009-2010____A11_0
Merle, Frank; Zaag, Hatem. Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 11, 10 p. https://geodesic-test.mathdoc.fr/item/SEDP_2009-2010____A11_0/

[1] S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1995. | Zbl | MR

[2] S. Alinhac. A numerical study of blowup for wave equations with gradient terms. 2006. preprint.

[3] C. Antonini and F. Merle. Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices, (21):1141–1167, 2001. | Zbl | MR

[4] L. A. Caffarelli and A. Friedman. Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal., 91(1):83–98, 1985. | Zbl | MR

[5] L. A. Caffarelli and A. Friedman. The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc., 297(1):223–241, 1986. | Zbl | MR

[6] J. Ginibre, A. Soffer, and G. Velo. The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal., 110(1):96–130, 1992. | Zbl | MR

[7] S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. I. Comm. Partial Differential Equations, 18(3-4):431–452, 1993. | Zbl | MR

[8] S. Kichenassamy and W. Littman. Blow-up surfaces for nonlinear wave equations. II. Comm. Partial Differential Equations, 18(11):1869–1899, 1993. | Zbl | MR

[9] H. A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=-Au+(u). Trans. Amer. Math. Soc., 192:1–21, 1974. | Zbl | MR

[10] Y. Martel and F. Merle. Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2), 155(1):235–280, 2002. | Zbl | MR

[11] F. Merle and P. Raphael. On universality of blow-up profile for L2 critical nonlinear Schrödinger equation. Invent. Math., 156(3):565–672, 2004. | Zbl | MR

[12] F. Merle and H. Zaag. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math., 51(2):139–196, 1998. | Zbl | MR

[13] F. Merle and H. Zaag. A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Annalen, 316(1):103–137, 2000. | Zbl | MR

[14] F. Merle and H. Zaag. Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math., 125:1147–1164, 2003. | Zbl | MR

[15] F. Merle and H. Zaag. Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices, (19):1127–1156, 2005. | Zbl | MR

[16] F. Merle and H. Zaag. Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen, 331(2):395–416, 2005. | Zbl | MR

[17] F. Merle and H. Zaag. Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal., 253(1):43–121, 2007. | Zbl | MR

[18] F. Merle and H. Zaag. Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation. Comm. Math. Phys., 282:55–86, 2008. | Zbl | MR

[19] F. Merle and H. Zaag. Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Amer. J. Math., 2010. to appear.

[20] F. Merle and H. Zaag. Isolatedness of characteristic points for a semilinear wave equation in one space dimension. 2010. preprint.

[21] N Nouaili. A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations. J. Dynam. Differential Equations, 2008. to appear. | MR

[22] H. Zaag. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J., 133(3):499–525, 2006. | Zbl | MR