Existence of a solution to -diva(x,Du)=f with a(x,ξ) a maximal monotone graph in ξ for every x given
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 4, 4 p.

Voir la notice de l'acte dans Numdam

Murat, François 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris 6)
@article{SEDP_2002-2003____A4_0,
     author = {Murat, Fran\c{c}ois},
     title = {Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:4},
     pages = {1--4},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2002-2003},
     mrnumber = {2030699},
     zbl = {02124130},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/}
}
TY  - JOUR
AU  - Murat, François
TI  - Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:4
PY  - 2002-2003
SP  - 1
EP  - 4
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/
LA  - en
ID  - SEDP_2002-2003____A4_0
ER  - 
%0 Journal Article
%A Murat, François
%T Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:4
%D 2002-2003
%P 1-4
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/
%G en
%F SEDP_2002-2003____A4_0
Murat, François. Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 4, 4 p. https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/