Existence of a solution to with a maximal monotone graph in for every given
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 4, 4 p.
Voir la notice de l'acte dans Numdam
@article{SEDP_2002-2003____A4_0, author = {Murat, Fran\c{c}ois}, title = {Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:4}, pages = {1--4}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, mrnumber = {2030699}, zbl = {02124130}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/} }
TY - JOUR AU - Murat, François TI - Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:4 PY - 2002-2003 SP - 1 EP - 4 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/ LA - en ID - SEDP_2002-2003____A4_0 ER -
%0 Journal Article %A Murat, François %T Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:4 %D 2002-2003 %P 1-4 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/ %G en %F SEDP_2002-2003____A4_0
Murat, François. Existence of a solution to $-\hbox{\rm div}\, a(x,Du) = f$ with $a(x,\xi )$ a maximal monotone graph in $\xi $ for every $x$ given. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 4, 4 p. https://geodesic-test.mathdoc.fr/item/SEDP_2002-2003____A4_0/