Moto di una bicicletta con ruote non circolari
Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 145-157.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

Su quale terreno può rotolare senza scivolare una ruota non circolare? Sulla questione, di cui si sono interessate le cronache perché è stata proposta come tema agli esami della Scuola Media Superiore del 2017, richiamiamo alcune proposte presenti in letteratura e formuliamo qualche ulteriore osservazione.
@article{RUMI_2019_1_4_2_a9,
     author = {Frosali, Giovanni and Mariano, Paolo Maria},
     title = {Moto di una bicicletta con ruote non circolari},
     journal = {Matematica, cultura e societ\`a : rivista dell'Unione Matematica Italiana},
     pages = {145--157},
     publisher = {mathdoc},
     volume = {Ser. 1, 4},
     number = {2},
     year = {2019},
     zbl = {1418.70008},
     mrnumber = {3965687},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a9/}
}
TY  - JOUR
AU  - Frosali, Giovanni
AU  - Mariano, Paolo Maria
TI  - Moto di una bicicletta con ruote non circolari
JO  - Matematica, cultura e società : rivista dell'Unione Matematica Italiana
PY  - 2019
SP  - 145
EP  - 157
VL  - 4
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a9/
LA  - it
ID  - RUMI_2019_1_4_2_a9
ER  - 
%0 Journal Article
%A Frosali, Giovanni
%A Mariano, Paolo Maria
%T Moto di una bicicletta con ruote non circolari
%J Matematica, cultura e società : rivista dell'Unione Matematica Italiana
%D 2019
%P 145-157
%V 4
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a9/
%G it
%F RUMI_2019_1_4_2_a9
Frosali, Giovanni; Mariano, Paolo Maria. Moto di una bicicletta con ruote non circolari. Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 145-157. https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a9/

[1] Ali S. (2017), A unified dynamic algorithm for wheeled multibody systems with passive joints and nonholonomic constraints, Multibody Syst. Dyn., 41, 317-346. | fulltext (doi) | MR | Zbl

[2] Boyer F., Porez M., Mauny J. (2018), Reduced dynamics of the non-holonomic Whipple bicycle, J. Nonlinear Sci., 28, 483-493. | fulltext (doi) | MR | Zbl

[3] Chen C.-K., Chu T.-D., ZHANG, X.-D. (2019), Modeling and control of an active stabilizing assistant system for a bicycle, Sensors, 19, art. n. 248.

[4] Escalona J. L., Recuero A. M. (2012), A bicycle model for education in multibody dynamics and real-time interactive simulation, Multibody Syst. Dyn., 27, 383-402. | fulltext (doi) | MR | Zbl

[5] Getz N. H., Marsden J. E. (1995), Control for an autonomous bicycle, Proc. 1995 IEEE Int. Conf. Robotics Autom., 2, 1397-1402.

[6] Górecki H. (2018), Mathematical model of a bicycle and its stability analysis, Studies in Systems, Decision and Control, 107, 641-663.

[7] Hall L., Wagon S. (1992), Roads and wheels, Math. Mag., 65, 283-301. | fulltext (doi) | MR | Zbl

[8] Herlihy D. V. (2004) Bicycle: The history. New Haven and London:Yale University Press.

[9] Koon W. S., Marsden J. E. (1997), The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems, Rep. Math. Phys. , 40, 21-62. | fulltext (doi) | MR | Zbl

[10] Jeong H. B., Ahn C. K., You S. H., SOHN, K. M. (2019), Finite-memory estimation for vehicle roll and road bank angles, IEEE Trans. Ind. Elect. , 66, 5423-5432.

[11] Levi M. (2017), Schrödinger's equation and “bike tracks”, J. Geom. Phys., 115, 124-130. | fulltext (doi) | MR | Zbl

[12] Limebeer D. J. N., Sharma A. (2010), Burst oscillations in the accelerating bicycle, J. Appl. Mech. Trans. ASME, 77, art. n. 061012.

[13] Macdermid P. W., Fink P. W., Miller M. C., Stannard S. (2017), The impact of uphill cycling and bicycle suspension on downhill performance during cross-country mountain biking, J. Sports Sci. , 35, 1355-1363.

[14] Merten E. A. (2014), Application of evolutionary structural optimisation; reinventing the (bicycle) wheel, Appl. Mech. Mat. , 553, 830-835.

[15] Meijaard J. P., Papadopoulos Jim M., Ruina A., Schwab A. L. (2011), History of thoughts about bicycle self-stability. http://arxiv.org, 2011. eCommons@Cornell. | Zbl

[16] MoMath National Museum of Mathematics, http://momath.org/

[17] Robison I. G. B. (1960), Rockers and rollers, Math. Mag., 33, 139-144. | Zbl

[18] Rozenblat G. M. (2016), The controlled motion of a bicycle, J. Appl. Math. Mech., 80, 133-140. | fulltext (doi) | MR | Zbl

[19] Schwab A. L., De Lange P. D. L., Happee R., Moore J. K. (2013), Rider control identification in bicycling using lateral force perturbation tests, Proc. Inst. Mech. Eng.s, Part K: J. Multi-body Dyn., 227, 390-406.

[20] Spicer J. B. (2013), Effects of the nonlinear elastic behavior of bicycle chain on transmission efficiency, J. Appl. Mech. Trans. ASME, 80, art. n. 021005.

[21] Tabachnikov S. (2017), On the bicycle transformation and the filament equation results and conjectures, J. Geom. Phys., 115, 116-123. | fulltext (doi) | MR | Zbl

[22] Wilson D. G. (2004). Bicycling Science. The MIT Press, 3rd edition.

[23] Wu Y.-C., Chen L.-A. (2016), A gear-shifting mechanism with a rotary configuration for applications in a 16-speed bicycle transmission hub, Trans. Canadian Soc. Mech. Eng., 40, 597-606.

[24] Zagorski S. B. (2019), Derivation of a multi-body model of an articulated vehicle, Int. J. Vehicle Perf., 5, 129-164.