Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{RUMI_2019_1_4_2_a8, author = {Sorrentino, Alfonso}, title = {I matematici giocano ... a biliardo!}, journal = {Matematica, cultura e societ\`a : rivista dell'Unione Matematica Italiana}, pages = {131--144}, publisher = {mathdoc}, volume = {Ser. 1, 4}, number = {2}, year = {2019}, zbl = {1379.37104}, mrnumber = {3965686}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a8/} }
TY - JOUR AU - Sorrentino, Alfonso TI - I matematici giocano ... a biliardo! JO - Matematica, cultura e società : rivista dell'Unione Matematica Italiana PY - 2019 SP - 131 EP - 144 VL - 4 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a8/ LA - it ID - RUMI_2019_1_4_2_a8 ER -
Sorrentino, Alfonso. I matematici giocano ... a biliardo!. Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 131-144. https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a8/
[ADK] An integrable deformation of an ellipse of small eccentricity is an ellipse. Ann. Math., vol. 184, pp. 527-558, 2016. | fulltext (doi) | MR | Zbl
, , .[Bia] Convex billiards and a theorem by E. Hopf. Math. Z., vol. 124, pp. 147-154, 1993. | fulltext EuDML | fulltext (doi) | MR | Zbl
.[Bir] On the periodic motions of dynamical systems. Acta Math. vol. 50, pp. 359-379, 1927. | fulltext (doi) | MR | Zbl
.[FM] Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. J. Mod. Dyn., vol. 8, pp. 271-436, 2014. | fulltext (doi) | MR | Zbl
, .[GWW] One Cannot Hear the Shape of a Drum. Bulletin of the American Mathematical Society, vol. 27, no. 1, pp. 134-138, 1992. | fulltext (doi) | MR | Zbl
, , .[Hal] Strange billiard tables. Trans. Amer. Math. Soc., vol. 232, pp. 297-305, 1977. | fulltext (doi) | MR | Zbl
.[Ivr] The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Funktsional. Anal. i Prilozhen. vol. 14, no. 2, pp. 25-34, 1980. | MR
.[Kac] Can One Hear the Shape of a Drum?. The American Mathematical Monthly, vol. 73, no. 4, pp. 1-23, 1966. | fulltext (doi) | MR | Zbl
.[KS] On the local Birkhoff conjecture for convex billiards. Ann. Math., vol. 188, pp. 315-380, 2018. | fulltext (doi) | MR | Zbl
, .[Laz] Existence of caustics for the billiard problem in a convex domain. Izv. Akad. Nauk SSSR Ser. Mat., vol. 37, pp. 186-216, 1973 (in russo). | MR
.[MT] Rational billiards and flat structures. Handbook of Dynamical Systems, vol. 1A, North-Holland, 1015-1089, 2002. | fulltext (doi) | MR | Zbl
, .[Mat] Glancing billiards. Ergodic Theory Dynam. Systems 2 (3-4): 397-403, 1982. | fulltext (doi) | MR | Zbl
.[Por] The billiard ball problem on a table with a convex boundary–an illustrative dynamical problem. Ann. Math., vol. 51, pp. 446-470, 1950. | fulltext (doi) | MR | Zbl
.[Ray] The Problem of the Whispering Gallery. Phil. Mag., vol. 20, pp. 1001-1004, 1910. | Zbl
.[Sin] Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surveys, vol. 25, pp. 137-189, 1970. | MR | Zbl
.[Tab1] Billiards. Panor. Synth., pp. vi+142, 1995. | MR
.[Tab2] Geometry and billiards. Student mathematical library, vol. 30, pp. xii+176, Providence, RI, American Mathematical Society, 2005. | fulltext (doi) | MR
.