Understanding singularitiesin free boundary problems
Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 107-118.

Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica

I problemi di frontiera libera sono quelli descritti da EDP che mostrano interfacce o frontiere a priori sconosciuti (liberi). L'esempio più classico è lo scioglimento del ghiaccio in acqua (problema di Stefan). In questo caso, la frontiera libera è l'interfaccia solido-liquido tra acqua e ghiaccio. Una sfida matematica centrale in questo contesto è comprendere la regolarità e le singolarità delle frontiere libere. In questo articolo introduciamo questo argomento presentando alcuni risultati classici di Luis Caffarelli, oltre ad alcuni importanti lavori recenti dovuti ad Alessio Figalli e collaboratori.
@article{RUMI_2019_1_4_2_a5,
     author = {Ros-Oton, Xavier and Serra, Joaquim},
     title = {Understanding singularitiesin free boundary problems},
     journal = {Matematica, cultura e societ\`a : rivista dell'Unione Matematica Italiana},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {Ser. 1, 4},
     number = {2},
     year = {2019},
     zbl = {0985.49001},
     mrnumber = {3965683},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/}
}
TY  - JOUR
AU  - Ros-Oton, Xavier
AU  - Serra, Joaquim
TI  - Understanding singularitiesin free boundary problems
JO  - Matematica, cultura e società : rivista dell'Unione Matematica Italiana
PY  - 2019
SP  - 107
EP  - 118
VL  - 4
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/
LA  - it
ID  - RUMI_2019_1_4_2_a5
ER  - 
%0 Journal Article
%A Ros-Oton, Xavier
%A Serra, Joaquim
%T Understanding singularitiesin free boundary problems
%J Matematica, cultura e società : rivista dell'Unione Matematica Italiana
%D 2019
%P 107-118
%V 4
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/
%G it
%F RUMI_2019_1_4_2_a5
Ros-Oton, Xavier; Serra, Joaquim. Understanding singularitiesin free boundary problems. Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 107-118. https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/

[1] F. J. Almgren, Almgren's big regularity paper. Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, J. E. Taylor, V. Scheffer, eds. World Scientific Monograph Series in Mathematics, 2000. | MR | Zbl

[2] C. Baiocchi, Free boundary problems in the theory of fluid flow through porous media, in Proceedings of the ICM 1974. | MR | Zbl

[3] B. Barrios, A. Figalli, X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, Amer. J. Math. 140 (2018), 415-447. | fulltext (doi) | MR | Zbl

[4] B. Barrios, A. Figalli, X. Ros-Oton, Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math. 71 (2018), 2129-2159. | fulltext (doi) | MR

[5] A. Blanchet, On the singular set of the parabolic obstacle problem, J. Differential Equations 231 (2006), 656-672. | fulltext (doi) | MR | Zbl

[6] L. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 155-184. | fulltext (doi) | MR | Zbl

[7] L. Caffarelli, Compactness methods in free boundary problems, Comm. Partial Differential Equations 5 (1980), 427-448. | fulltext (doi) | MR | Zbl

[8] L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 383-402. | fulltext EuDML | fulltext (doi) | MR | Zbl

[9] L. Caffarelli, A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013), 191-233. | fulltext (doi) | MR | Zbl

[10] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | fulltext (doi) | MR | Zbl

[11] L. Caffarelli, N. M. Rivière, Asymptotic behavior of free boundaries at their singular points, Ann. of Math. 106 (1977), 309-317. | fulltext (doi) | MR | Zbl

[12] L. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, vol. 68, AMS 2005. | fulltext (doi) | MR | Zbl

[13] L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425-461. | fulltext (doi) | MR | Zbl

[14] J. A. Carrillo, M. G. Delgadino, A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys. 343 (2016), 747-781. | fulltext (doi) | MR | Zbl

[15] M. Colombo, L. Spolaor, B. Velichkov, A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal. 28 (2018), 1029-1061. | fulltext (doi) | MR | Zbl

[16] R. Cont, P. Tankov, Financial Modelling With Jump Processes, Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. | MR | Zbl

[17] D. De Silva, O. Savin, Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Rev. Mat. Iberoam. 32 (2016), 891-912. | fulltext (doi) | MR | Zbl

[18] G. Duvaut, Résolution d'un problème de Stefan (Fusion d'un bloc de glace a zero degrées), C. R. Acad. Sci. Paris 276 (1973), 1461-1463. | MR | Zbl

[19] G. Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer, 1976. | MR | Zbl

[20] X. Fernández-Real, Y. Jhaveri, On the singular set in the thin obstacle problem: higher order blow-ups and the very thin obstacle problem, preprint arXiv (2018). | fulltext (doi) | MR

[21] X. Fernández-Real, X. Ros-Oton, The obstacle problem for the fractional Laplacian with critical drift, Math. Ann. 371 (2018), 1683-1735. | fulltext (doi) | MR | Zbl

[22] A. Figalli, Regularity of interfaces in phase transitions via obstacle problems, Prooceedings of the International Congress of Mathematicians (2018). | MR

[23] A. Figalli, J. Serra, On the fine structure of the free boundary for the classical obstacle problem, Invent. Math. 215 (2019), 311-366. | fulltext (doi) | MR | Zbl

[24] A. Figalli, X. Ros-Oton, J. Serra, On the singular set in the Stefan problem and a conjecture of Schaeffer, forthcoming (2019).

[25] M. Focardi, E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacle problem, Arch. Rat. Mech. Anal. 230 (2018), 125-184. | fulltext (doi) | MR | Zbl

[26] M. Focardi, E. Spadaro, The local structure of the free boundary in the fractional obstacle problem, forthcoming. | Zbl

[27] A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York, 1982. | MR | Zbl

[28] N. Garofalo, A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 414-461. | fulltext (doi) | MR | Zbl

[29] N. Garofalo, A. Petrosyan, C. A. Pop, M. Smit Vega Garcia, Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 533-570. | fulltext (doi) | MR

[30] N. Garofalo, X. Ros-Oton, Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian, Rev. Mat. Iberoam. (2019), in press. | fulltext (doi) | MR | Zbl

[31] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80, Birkhäuser, 1984. | fulltext (doi) | MR | Zbl

[32] Y. Jhaveri, R. Neumayer, Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian, Adv. Math. 311 (2017), 748-795. | fulltext (doi) | MR | Zbl

[33] D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems, Ann. Sc. Norm. Sup. Pisa (1977), 373-391. | fulltext EuDML | MR | Zbl

[34] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, 1980. | MR | Zbl

[35] H. Koch, A. Petrosyan, W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal. 126 (2015), 3-44. | fulltext (doi) | MR | Zbl

[36] H. Koch, A. Rüland, W. Shi, Higher regularity for the fractional thin obstacle problem, preprint arXiv (2016). | MR | Zbl

[37] G. Lamé, B. P. Clapeyron, Mémoire sur la solidification par refroidissement d'un globe liquide, Ann. Chimie Physique 47 (1831), 250-256.

[38] E. Lindgren, R. Monneau, Pointwise regularity of the free boundary for the parabolic obstacle problem, Calc. Var. Partial Differential Equations 54 (2015), 299-347. | fulltext (doi) | MR | Zbl

[39] R. Merton, Option pricing when the underlying stock returns are discontinuous, J. Finan. Econ. 5 (1976), 125-144. | Zbl

[40] R. Monneau, On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal. 13 (2003), 359-389. | fulltext (doi) | MR | Zbl

[41] A. Petrosyan, C. A. Pop, Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift, J. Funct. Anal. 268 (2015), 417-472. | fulltext (doi) | MR | Zbl

[42] A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of Free Boundaries in Obstacle-type Problems, volume 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. | fulltext (doi) | MR | Zbl

[43] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. | MR | Zbl

[44] M. Sakai, Regularity of a boundary having a Schwarz function. Acta Math. 166 (1991), 263-297. | fulltext (doi) | MR | Zbl

[45] M. Sakai, Regularity of free boundaries in two dimensions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 3, 323-339. | fulltext EuDML | MR | Zbl

[46] D. G. Schaeffer, An example of generic regularity for a nonlinear elliptic equation, Arch. Rat. Mech. Anal. 57 (1974), 134-141. | fulltext (doi) | MR | Zbl

[47] D. G. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa 4 (1977), 133-144. | fulltext EuDML | MR | Zbl

[48] Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, EMS books, 2015. | fulltext (doi) | MR

[49] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67-112. | fulltext (doi) | MR | Zbl

[50] J. H. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105. | fulltext (doi) | MR | Zbl

[51] N. Smale, Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds, Comm. Anal. Geom. 1 (1993), 217-228. | fulltext (doi) | MR | Zbl

[52] J. Stefan, Ueber einige Probleme der Theorie der Wärmeleitung, Wien. Ber. 98 (1889), 473-484. | Zbl

[53] J. Stefan, Ueber die Theorie der Eisbildung, insbesondere ueber die Eisbildung im Polarmeere, Ann. Physik Chemie 42 (1891), 269-286. | fulltext (doi) | MR | Zbl

[54] G. Weiss, A homogeneity improvement approach to the obstacle problem, Invent. Math. 138 (1999) 23-50. | fulltext (doi) | MR | Zbl

[55] G. Weiss, Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems, SIAM J. Math. Anal. 30 (1999) 623-644. | fulltext (doi) | MR | Zbl

[56] B. White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000), 665-695. | fulltext (doi) | MR | Zbl