Voir la notice de l'article dans Biblioteca Digitale Italiana di Matematica
@article{RUMI_2019_1_4_2_a5, author = {Ros-Oton, Xavier and Serra, Joaquim}, title = {Understanding singularitiesin free boundary problems}, journal = {Matematica, cultura e societ\`a : rivista dell'Unione Matematica Italiana}, pages = {107--118}, publisher = {mathdoc}, volume = {Ser. 1, 4}, number = {2}, year = {2019}, zbl = {0985.49001}, mrnumber = {3965683}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/} }
TY - JOUR AU - Ros-Oton, Xavier AU - Serra, Joaquim TI - Understanding singularitiesin free boundary problems JO - Matematica, cultura e società : rivista dell'Unione Matematica Italiana PY - 2019 SP - 107 EP - 118 VL - 4 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/ LA - it ID - RUMI_2019_1_4_2_a5 ER -
%0 Journal Article %A Ros-Oton, Xavier %A Serra, Joaquim %T Understanding singularitiesin free boundary problems %J Matematica, cultura e società : rivista dell'Unione Matematica Italiana %D 2019 %P 107-118 %V 4 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/ %G it %F RUMI_2019_1_4_2_a5
Ros-Oton, Xavier; Serra, Joaquim. Understanding singularitiesin free boundary problems. Matematica, cultura e società : rivista dell'Unione Matematica Italiana, Série 1, Tome 4 (2019) no. 2, pp. 107-118. https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a5/
[1] Almgren's big regularity paper. Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, J. E. Taylor, V. Scheffer, eds. World Scientific Monograph Series in Mathematics, 2000. | MR | Zbl
,[2] Free boundary problems in the theory of fluid flow through porous media, in Proceedings of the ICM 1974. | MR | Zbl
,[3] Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, Amer. J. Math. 140 (2018), 415-447. | fulltext (doi) | MR | Zbl
, , ,[4] Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math. 71 (2018), 2129-2159. | fulltext (doi) | MR
, , ,[5] On the singular set of the parabolic obstacle problem, J. Differential Equations 231 (2006), 656-672. | fulltext (doi) | MR | Zbl
,[6] The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 155-184. | fulltext (doi) | MR | Zbl
,[7] Compactness methods in free boundary problems, Comm. Partial Differential Equations 5 (1980), 427-448. | fulltext (doi) | MR | Zbl
,[8] The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 383-402. | fulltext EuDML | fulltext (doi) | MR | Zbl
,[9] Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013), 191-233. | fulltext (doi) | MR | Zbl
, ,[10] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | fulltext (doi) | MR | Zbl
, , ,[11] Asymptotic behavior of free boundaries at their singular points, Ann. of Math. 106 (1977), 309-317. | fulltext (doi) | MR | Zbl
, ,[12] A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, vol. 68, AMS 2005. | fulltext (doi) | MR | Zbl
, ,[13] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425-461. | fulltext (doi) | MR | Zbl
, , ,[14] Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys. 343 (2016), 747-781. | fulltext (doi) | MR | Zbl
, , ,[15] A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal. 28 (2018), 1029-1061. | fulltext (doi) | MR | Zbl
, , ,[16] Financial Modelling With Jump Processes, Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. | MR | Zbl
, ,[17] Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Rev. Mat. Iberoam. 32 (2016), 891-912. | fulltext (doi) | MR | Zbl
, ,[18] Résolution d'un problème de Stefan (Fusion d'un bloc de glace a zero degrées), C. R. Acad. Sci. Paris 276 (1973), 1461-1463. | MR | Zbl
,[19] Inequalities in Mechanics and Physics, Springer, 1976. | MR | Zbl
, ,[20] On the singular set in the thin obstacle problem: higher order blow-ups and the very thin obstacle problem, preprint arXiv (2018). | fulltext (doi) | MR
, ,[21] The obstacle problem for the fractional Laplacian with critical drift, Math. Ann. 371 (2018), 1683-1735. | fulltext (doi) | MR | Zbl
, ,[22] Regularity of interfaces in phase transitions via obstacle problems, Prooceedings of the International Congress of Mathematicians (2018). | MR
,[23] On the fine structure of the free boundary for the classical obstacle problem, Invent. Math. 215 (2019), 311-366. | fulltext (doi) | MR | Zbl
, ,[24] On the singular set in the Stefan problem and a conjecture of Schaeffer, forthcoming (2019).
, , ,[25] On the measure and the structure of the free boundary of the lower dimensional obstacle problem, Arch. Rat. Mech. Anal. 230 (2018), 125-184. | fulltext (doi) | MR | Zbl
, ,[26] The local structure of the free boundary in the fractional obstacle problem, forthcoming. | Zbl
, ,[27] Variational Principles and Free Boundary Problems, Wiley, New York, 1982. | MR | Zbl
,[28] Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 414-461. | fulltext (doi) | MR | Zbl
, ,[29] Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 533-570. | fulltext (doi) | MR
, , , ,[30] Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian, Rev. Mat. Iberoam. (2019), in press. | fulltext (doi) | MR | Zbl
, ,[31] Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80, Birkhäuser, 1984. | fulltext (doi) | MR | Zbl
,[32] Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian, Adv. Math. 311 (2017), 748-795. | fulltext (doi) | MR | Zbl
, ,[33] Regularity in free boundary problems, Ann. Sc. Norm. Sup. Pisa (1977), 373-391. | fulltext EuDML | MR | Zbl
, ,[34] An Introduction to Variational Inequalities and Their Applications, SIAM, 1980. | MR | Zbl
, ,[35] Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal. 126 (2015), 3-44. | fulltext (doi) | MR | Zbl
, , ,[36] Higher regularity for the fractional thin obstacle problem, preprint arXiv (2016). | MR | Zbl
, , ,[37] Mémoire sur la solidification par refroidissement d'un globe liquide, Ann. Chimie Physique 47 (1831), 250-256.
, ,[38] Pointwise regularity of the free boundary for the parabolic obstacle problem, Calc. Var. Partial Differential Equations 54 (2015), 299-347. | fulltext (doi) | MR | Zbl
, ,[39] Option pricing when the underlying stock returns are discontinuous, J. Finan. Econ. 5 (1976), 125-144. | Zbl
,[40] On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal. 13 (2003), 359-389. | fulltext (doi) | MR | Zbl
,[41] Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift, J. Funct. Anal. 268 (2015), 417-472. | fulltext (doi) | MR | Zbl
, ,[42] Regularity of Free Boundaries in Obstacle-type Problems, volume 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. | fulltext (doi) | MR | Zbl
, , ,[43] Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. | MR | Zbl
,[44] Regularity of a boundary having a Schwarz function. Acta Math. 166 (1991), 263-297. | fulltext (doi) | MR | Zbl
,[45] Regularity of free boundaries in two dimensions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 3, 323-339. | fulltext EuDML | MR | Zbl
,[46] An example of generic regularity for a nonlinear elliptic equation, Arch. Rat. Mech. Anal. 57 (1974), 134-141. | fulltext (doi) | MR | Zbl
,[47] Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa 4 (1977), 133-144. | fulltext EuDML | MR | Zbl
,[48] Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, EMS books, 2015. | fulltext (doi) | MR
,[49] Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67-112. | fulltext (doi) | MR | Zbl
,[50] Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105. | fulltext (doi) | MR | Zbl
,[51] Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds, Comm. Anal. Geom. 1 (1993), 217-228. | fulltext (doi) | MR | Zbl
,[52] Ueber einige Probleme der Theorie der Wärmeleitung, Wien. Ber. 98 (1889), 473-484. | Zbl
,[53] Ueber die Theorie der Eisbildung, insbesondere ueber die Eisbildung im Polarmeere, Ann. Physik Chemie 42 (1891), 269-286. | fulltext (doi) | MR | Zbl
,[54] A homogeneity improvement approach to the obstacle problem, Invent. Math. 138 (1999) 23-50. | fulltext (doi) | MR | Zbl
,[55] Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems, SIAM J. Math. Anal. 30 (1999) 623-644. | fulltext (doi) | MR | Zbl
,[56] The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000), 665-695. | fulltext (doi) | MR | Zbl
,