Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2019_1_4_2_a4, author = {Cinti, Eleonora}, title = {Il problema isoperimetrico:una storia lunga 2000 anni}, journal = {Matematica, cultura e societ\`a}, pages = {95--106}, publisher = {mathdoc}, volume = {Ser. 1, 4}, number = {2}, year = {2019}, zbl = {36.0432.01}, mrnumber = {3965682}, language = {it}, url = {https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a4/} }
Cinti, Eleonora. Il problema isoperimetrico:una storia lunga 2000 anni. Matematica, cultura e società, Série 1, Tome 4 (2019) no. 2, pp. 95-106. https://geodesic-test.mathdoc.fr/item/RUMI_2019_1_4_2_a4/
[1] Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene, Math. Ann. 60 (1905), no. 1, 117-136. | fulltext EuDML | DOI | MR | Zbl
,[2] Über das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), no. 3-4, 252-268. | fulltext EuDML | DOI | MR | Zbl
,[3] Elementi di una teoria generale dell'integrazione k-dimensionale in uno spazio n-dimensionale, Atti IV Convegno UMI, (1951). | MR | Zbl
,[4] Misura e integrazione sugli insiemi dimensionalmente orientati, Note I e II, Rend. Accad. Naz. Lincei, (1952). | MR
,[5] A selection principle for the sharp quantitative isoperimetric inequality, Arch. Rat. Mech. Anal. 206 (2012), 617-643. | DOI | MR | Zbl
, ,[6] Definizione ed espressione analitica del perimetro di un insieme, Rend. Cl. Sci. Fis. Mat. Natur., (1953). | MR | Zbl
,[7] Su una teoria generale della misura $(r - 1)$-dimensionale in uno spazio ad $r$ dimensioni, Ann. Mat. Pura Appl. (4) 36, (1954). 191-213. | DOI | MR | Zbl
,[8] Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) (1958), 33-44. | MR | Zbl
,[9] A refined Brunn Minkowski inequality for convex sets, Ann. Inst. H. Poincaré Anal. Non Linèaire 26 (2009), no. 6, 2511-2519. | fulltext EuDML | DOI | MR | Zbl
, , :[10] A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182 (2010), 167-211. | DOI | MR | Zbl
, , ,[11] Stability in the isoperimetric problem for convex or nearly spherical domains in $\mathbb{R}^n$, Trans. Amer. Math. Soc. 314 (1989), 619-638. | DOI | MR | Zbl
,[12] The stability of the isoperimetric inequality. Vector-valued partial differential equations and applications, 73-123, Lecture Notes in Math., 2179, Fond. CIME/CIME Found. Subser., Springer, Cham, (2017). | MR | Zbl
,[13] The sharp quantitative isoperimetric inequality, Annals of Math. 168 (2008), 941-980. | DOI | MR | Zbl
, , ,[14] On the Equilibrium of Heterogeneous Substances, Transactions of the Connecticut Academy of Arts and Sciences, 3, (1874-1878) 108-248, 343-524. Reproduced in both The Scientific Papers (1906), pp. 55-353 and The Collected Works of J. Willard Gibbs (1928), pp. 55-353.
,[15] A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math. 428 (1992), 161-176. | fulltext EuDML | DOI | MR | Zbl
,[16] Contributions to the theory of convex bodies, Michigan Math. J. 4 (1957), 39-52. | MR | Zbl
,[17] Asymptotic Theory of Finite-dimensional Normed Spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986), viii+156 pp. | MR | Zbl
, ,[18] Mémoire sur la théorie des d'eblais et des remblais, Histoire de l' Académie Royale des Sciences de Paris, (1781), pp. 666-704.
,[19] Einfacher Beweis der isoperimetrischen Hauptsätze, J. reine angew Math., 18 (1838), 281-296. | fulltext EuDML | DOI | MR
,[20] Crystalline variational problems. Bull. Amer. Math. Soc. 84 (1978), no. 4, 568-588. | DOI | MR | Zbl
,[21] Zur Frage der Geschwindigkeit desWachsturms und der Auflösung der Kristallflächen, Z. Kristallogr. 34 (1901), 449-530.
,