Lineární funkce a rekurentně zadané posloupnosti
Rozhledy matematicko-fyzikální, Tome 84 (2009) no. 1, pp. 6-12.
Voir la notice de l'article dans Czech Digital Mathematics Library
The paper demonstrates a way how to find a formula for the nth term of a sequence that is given recursively. We concentrate only on a special case when the sequence is given by a linear recurrence relations of the first order with constant coefficients. There are given two applications of the derived formula at the end of the paper. Particularly we formulate and solve a problem of mortgage of loans and a problem of Towers of Benares which is also known as a problem of Towers of Hanoi.
@article{RMF_2009__84_1_a2, author = {Pra\v{z}\'ak, Pavel}, title = {Line\'arn{\'\i} funkce a rekurentn\v{e} zadan\'e posloupnosti}, journal = {Rozhledy matematicko-fyzik\'aln{\'\i}}, pages = {6--12}, publisher = {mathdoc}, volume = {84}, number = {1}, year = {2009}, language = {cz}, url = {https://geodesic-test.mathdoc.fr/item/RMF_2009__84_1_a2/} }
Pražák, Pavel. Lineární funkce a rekurentně zadané posloupnosti. Rozhledy matematicko-fyzikální, Tome 84 (2009) no. 1, pp. 6-12. https://geodesic-test.mathdoc.fr/item/RMF_2009__84_1_a2/