Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 4, pp. 219-233.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let \( M \) be a Riemannian manifold, which possesses a transitive Lie group \( G \) of isometries. We suppose that \( G \), and therefore \( M \), are compact and connected. We characterize the Sobolev spaces \( W_{p}^{1} (M) \)\( ( 1 p + \infty ) \) by means of the action of \( G \) on \( M \). This characterization allows us to prove a regularity result for the solution of a second order differential equation on \( M \) by global techniques.
Sia \( M \) una varietà riemanniana, dotata di un gruppo di Lie \( G \) transitivo di isometrie. Si suppone che \( G \), e pertanto \( M \), siano compatti e connessi. Si caratterizzano gli spazi di Sobolev \( W_{p}^{1} (M) \)\( ( 1 p + \infty ) \) tramite l'azione di \( G \) su \( M \). Questa caratterizzazione permette di dimostrare tramite tecniche globali un risultato di regolarità per la soluzione di un'equazione differenziale del secondo ordine su \( M \).
@article{RLIN_1996_9_7_4_a2,
     author = {Bondioli, Cristiana},
     title = {Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {219--233},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {4},
     year = {1996},
     zbl = {0938.46031},
     mrnumber = {450957},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_4_a2/}
}
TY  - JOUR
AU  - Bondioli, Cristiana
TI  - Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 219
EP  - 233
VL  - 7
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_4_a2/
LA  - en
ID  - RLIN_1996_9_7_4_a2
ER  - 
%0 Journal Article
%A Bondioli, Cristiana
%T Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 219-233
%V 7
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_4_a2/
%G en
%F RLIN_1996_9_7_4_a2
Bondioli, Cristiana. Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 4, pp. 219-233. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_4_a2/

[1] R. A. Adams, Sobolev Spaces. Academic Press, New York 1975. | MR | Zbl

[2] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag, New York-Heidelberg-Berlin 1982. | DOI | MR | Zbl

[3] M. P. Bernardi - C. Bondioli, Function spaces \( W^{1,p} \), \( BV \), \( N^{\lambda , p} \) characterized by the motions of \( \mathbb{R}^{n} \). Annali Mat. Pura Appl., to appear. | DOI | MR

[4] M. Biroli - U. Mosco, Sobolev inequalities on homogeneous spaces. Potential Analysis, 4, 1995, 311-324. | DOI | MR | Zbl

[5] C. Bondioli, Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. | fulltext bdim | fulltext mini-dml | MR | Zbl

[6] C. Bondioli, A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Math. Nachr., 166, 1994, 273-285. | DOI | MR | Zbl

[7] H. Brézis, Analyse fonctionnelle. Masson, Paris 1983. | MR | Zbl

[8] R. R. Coifman - G. Weiss, Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, n. 242, Springer-Verlag, Berlin-Heidelberg-New York 1971. | MR | Zbl

[9] S. Helgason, Groups and Geometric Analysis. Academic Press, New York 1984. | MR | Zbl

[10] P. I. Lizorkin - S. M. Nikol'Sktj, Approximations of functions on manifolds. In: H. J. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart-Leipzig 1993, 185-199. | MR | Zbl

[11] Y. Matsushima, Differentiable Manifolds. Marcel Dekkar Inc., New York 1972. | MR | Zbl

[12] V. G. Maz'Ya, Sobolev Spaces. Springer-Verlag, New York-Heidelberg-Berlin 1985 (translation from Russian, Leningrad Univ., 1985). | MR | Zbl

[13] L. Nirenberg, Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math., 8, 1955, 648-674. | MR | Zbl

[14] L. P. Rotschild - E. M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. | MR | Zbl

[15] L. Skrzypczak, Function spaces of Sobolev type on Riemannian symmetric manifolds. Forum Math., 3, 1991, 339-353. | fulltext EuDML | DOI | MR | Zbl

[16] H. Triebel, Theory of Function Spaces II. Birkhäuser, Basel-Boston-Berlin 1992. | DOI | MR | Zbl

[17] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces. Marcel Dekkar Inc., New York 1973. | MR | Zbl

[18] F. Warner, Foundation of Differential Manifolds and Lie Groups. Academic Press, New York 1971.