Some results on elliptic and parabolic equations in Hilbert spaces
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 181-199.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.
In questo lavoro si considerano equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità e regolarità delle soluzioni.
@article{RLIN_1996_9_7_3_a6,
     author = {Da Prato, Giuseppe},
     title = {Some results on elliptic and parabolic equations in {Hilbert} spaces},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {181--199},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {3},
     year = {1996},
     zbl = {0881.47018},
     mrnumber = {1245596},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a6/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
TI  - Some results on elliptic and parabolic equations in Hilbert spaces
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 181
EP  - 199
VL  - 7
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a6/
LA  - en
ID  - RLIN_1996_9_7_3_a6
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%T Some results on elliptic and parabolic equations in Hilbert spaces
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 181-199
%V 7
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a6/
%G en
%F RLIN_1996_9_7_3_a6
Da Prato, Giuseppe. Some results on elliptic and parabolic equations in Hilbert spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 181-199. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a6/

[1] P. Cannarsa - G. Da Prato, On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42. | DOI | MR | Zbl

[2] P. Cannarsa - G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452. | MR | Zbl

[3] P. Cannarsa - G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, September 1994). To appear. | MR | Zbl

[4] S. Cerrai, A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367 | fulltext EuDML | DOI | MR | Zbl

[5] S. Cerrai - F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486. | MR | Zbl

[6] G. Da Prato, Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: M. CHIPOT - J. SAINT JEAN PAULIN - I. SHAFRIR (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214. | MR | Zbl

[7] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl

[8] G. Da Prato - J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992. | DOI | MR | Zbl

[9] Ju. L. Daleckij, Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038. | MR | Zbl

[10] N. Dunford - J. T. Schwartz, Linear Operators. Vol. II, 1956. | Zbl

[11] L. Gross, Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189. | Zbl

[12] H. H. Kuo, Gaussian Measures in Banach Spaces. Springer-Verlag, 1975. | MR | Zbl

[13] J. M. Lasry - P. L. Lions, A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266. | DOI | MR | Zbl

[14] J. L. Lions - J. Peetre, Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel 1995. | DOI | MR | Zbl

[16] A. Lunardi, An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear. | fulltext EuDML | DOI | MR | Zbl

[17] A. S. Nemirovki - S. M. Semenov, The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281. | MR | Zbl

[18] A. Piech, Regularity of the Greens operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360. | Zbl

[19] A. Piech, A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114. | Zbl

[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1986. | MR | Zbl