Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1996_9_7_3_a5, author = {Jiang, Xun}, title = {A linear extrapolation method for a general phase relaxation problem}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {169--179}, publisher = {mathdoc}, volume = {Ser. 9, 7}, number = {3}, year = {1996}, zbl = {0872.35135}, mrnumber = {555381}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a5/} }
TY - JOUR AU - Jiang, Xun TI - A linear extrapolation method for a general phase relaxation problem JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1996 SP - 169 EP - 179 VL - 7 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a5/ LA - en ID - RLIN_1996_9_7_3_a5 ER -
%0 Journal Article %A Jiang, Xun %T A linear extrapolation method for a general phase relaxation problem %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1996 %P 169-179 %V 7 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a5/ %G en %F RLIN_1996_9_7_3_a5
Jiang, Xun. A linear extrapolation method for a general phase relaxation problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 169-179. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a5/
[1] A numerical method for solving the problem \( u_{t} — \Delta f(u) = 0 \). RAIRO Anal. Numér., 1979, 297-312. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[2] Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer, Berlin-Heidelberg 1983. | MR | Zbl
- ,[3] Optimal error estimates for a semidiscrete phase relaxation model. RAIRO Model. Math. Anal. Numer., to appear. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[4] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Model. Math. Anal. Numer., 21, 1987, 655-678. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[5] Error estimates for multidimensional singular parabolic problems. Japan J. Appl. Math., 4, 1987, 111-138. | DOI | MR | Zbl
,[6] Finite element methods for parabolic free boundary problems. In: W. LIGHT (ed.), Advances in Numerical Analysis, Vol. I: Nonlinear Partial Differential Equations and Dynamical Systems. 1990 Lancaster Summer School Proceedings, Oxford University Press, 1991, 34-88. | MR | Zbl
,[7] Continuous and semidiscrete travelling waves for a phase relaxation model. European J. Appl. Math., 5, 1994, 177-199. | DOI | MR | Zbl
- - ,[8] An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. | DOI | MR | Zbl
- ,[9] Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal, 33, 1996, 31-55. | DOI | MR | Zbl
,[10] Numerical aspects of parabolic free boundary and hysteresis problems. In: A. VISINTIN (ed.), Phase Transition and Hysteresis. LN Math., vol. 158, Springer-Verlag, Berlin 1994. | DOI | MR | Zbl
,[11] Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. | fulltext EuDML | DOI | MR | Zbl
- ,[12] Stefan problem with phase relaxation. IMA J. Appl. Math., 34, 1985, 225-245. | DOI | MR | Zbl
,[13] Supercooling and superheating effects in phase transition. IMA J. Appl. Math., 35, 1985, 233-256. | DOI | MR | Zbl
,