The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 161-168.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution \( u \) which is bounded with values in \( C^{2 + \theta} (\overline{\Omega}) \) (0 \theta 1), with \( \partial_{t} u \) bounded with values in \( C^{\theta} (\overline{\Omega}) \).
Si dà una nuova dimostrazione, basata su metodi di semigruppi analitici, di un risultato di regolarità massimale per il classico problema al contorno di Cauchy-Dirichlet per equazioni paraboliche del secondo ordine. Più specificamente, si trovano condizioni necessarie e sufficienti sui dati per avere una soluzione stretta \( u \) che sia limitata a valori in \( C^{2 + \theta} (\overline{\Omega}) \) con \( \partial_{t} u \) limitata a valori in \( C^{\theta} (\overline{\Omega}) \).
@article{RLIN_1996_9_7_3_a4,
     author = {Guidetti, Davide},
     title = {The parabolic mixed {Cauchy-Dirichlet} problem in spaces of functions which are h\"older continuous with respect to space variables},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {3},
     year = {1996},
     zbl = {0871.35045},
     mrnumber = {900340},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a4/}
}
TY  - JOUR
AU  - Guidetti, Davide
TI  - The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 161
EP  - 168
VL  - 7
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a4/
LA  - en
ID  - RLIN_1996_9_7_3_a4
ER  - 
%0 Journal Article
%A Guidetti, Davide
%T The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 161-168
%V 7
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a4/
%G en
%F RLIN_1996_9_7_3_a4
Guidetti, Davide. The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 161-168. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a4/

[1] P. Acquistapace - B. Terreni, Hölder classes with boundary conditions as interpolation spaces. Math. Zeit., 195, 1987, 451-471. | fulltext EuDML | DOI | MR | Zbl

[2] P. Bolley - J. Camus - P. The Lai, Estimation de la résolvante du problème de Dirichlet dans les espaces de Hölder. C. R. Acad. Sci. Paris, 305, Serie I, 1987, 253-256. | MR | Zbl

[3] D. Guidetti, On elliptic problems in Besov spaces. Math. Nachr., 152, 1991, 247-275. | DOI | MR | Zbl

[4] B. Knerr, Parabolic interior Schauder estimates by the maximum principle. Arch. Rat. Mech. Anal., 75, 1980, 51-58. | DOI | MR | Zbl

[5] S. Kruzhkov - A. Castro - M. Lopez, Mayoraciones de Schauder y theorema de existencia de las soluciónes del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (I). Revista Ciencias Matemáticas, vol. 1, n. 1, 1980, 55-76. | MR | Zbl

[6] M. Lopez Morales, Primer problema de contorno para ecuaciones parabolicas lineales y no lineales. Revista Ciencias Matemáticas, vol. 13, n. 1, 1992, 3-20. | MR

[7] A. Lunardi, Analytic semigroups and optimal regularity in the parabolic problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser, 1995. | DOI | MR | Zbl

[8] A. Lunardi - E. Sinestrari - W. Von Wahl, A semigroup approach to the time dependent parabolic initial boundary value problem. Diff. Int. Equations, 63, 1992, 88-116. | Zbl

[9] E. Sinestrari - W. Von Wahl, On the solutions of the first boundary value problem for the linear parabolic problem. Proc. Royal Soc. Edinburgh, 108A, 1988, 339-355. | DOI | MR | Zbl

[10] V. A. Solonnikov, On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., 83 (1965), (ed. O. A. Ladyzenskaya); Amer. Math. Soc, 1967. | MR | Zbl

[11] H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Amer. Math. Soc., 259, 1980, 299-310. | DOI | MR | Zbl