Semiclassical states of nonlinear Schrödinger equations with bounded potentials
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 155-160.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using some perturbation results in critical point theory, we prove that a class of nonlinear Schrödinger equations possesses semiclassical states that concentrate near the critical points of the potential \( V \).
Usando dei risultati di perturbazione nella teoria dei punti critici, si prova che alcune equazioni di Schrödinger nonlineari hanno stati semiclassici che si concentrano vicino ai punti critici del potenziale \( V \).
@article{RLIN_1996_9_7_3_a3,
     author = {Ambrosetti, Antonio and Badiale, Marino and Cingolani, Silvia},
     title = {Semiclassical states of nonlinear {Schr\"odinger} equations with bounded potentials},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {3},
     year = {1996},
     zbl = {0872.35098},
     mrnumber = {879691},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a3/}
}
TY  - JOUR
AU  - Ambrosetti, Antonio
AU  - Badiale, Marino
AU  - Cingolani, Silvia
TI  - Semiclassical states of nonlinear Schrödinger equations with bounded potentials
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 155
EP  - 160
VL  - 7
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a3/
LA  - en
ID  - RLIN_1996_9_7_3_a3
ER  - 
%0 Journal Article
%A Ambrosetti, Antonio
%A Badiale, Marino
%A Cingolani, Silvia
%T Semiclassical states of nonlinear Schrödinger equations with bounded potentials
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 155-160
%V 7
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a3/
%G en
%F RLIN_1996_9_7_3_a3
Ambrosetti, Antonio; Badiale, Marino; Cingolani, Silvia. Semiclassical states of nonlinear Schrödinger equations with bounded potentials. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 3, pp. 155-160. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_3_a3/

[1] A. Ambrosetti - M. Badiale - S. Cingolani, Semiclassical states of nonlinear Schrödinger equations. To appear. | Zbl

[2] A. Ambrosetti - V. Coti Zelati - I. Ekeland, Symmetry breaking in Hamiltonian systems. Jour. Diff. Equat., 67, 1987, 165-184. | DOI | MR | Zbl

[3] M. Del Pino - P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Cal Var., 4, 1996, 121-137. | DOI | MR | Zbl

[4] A. Floer - A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. Jour. Funct. Anal., 69, 1986, 397-408. | DOI | MR | Zbl

[5] M. Grillakis - J. Shatah - W. Strauss, Stability theory of solitary waves in the presence of symmetry. Jour. Funct. Anal., 74, 1987, 160-197. | DOI | MR | Zbl

[6] C. Gui, Multi-bump solutions for nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, 322, 1966, 133-138. | MR | Zbl

[7] M. K. Kwong, Uniqueness of positive solutions of \( \Delta u — u + u^{p} = 0 \) in \( \mathbb{R}^{N} \). Arch. Rational Mech. Anal., 105, 1989, 243-266. | DOI | MR | Zbl

[8] Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potential in the class \( (V)_{a} \). Comm. Partial Diff. Eq., 13, 1988, 1499-1519. | DOI | MR | Zbl

[9] Y. G. Oh, Stability of semi-classical bound states of nonlinear Schrödinger equations with potentials. Comm. Math. Phys., 121, 1989, 11-33. | fulltext mini-dml | MR | Zbl

[10] P. H. Rabinowttz, On a class of nonlinear Schrödinger equations. ZAMP, 43, 1992, 271-291.

[11] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., 153, 1993, 223-243. | fulltext mini-dml | MR | Zbl