Complementi di sottospazi e singolarità coniche
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 113-123.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Discuterò una costruzione geometrica, fatta insieme a De Concini, di una modificazione di una configurazione di sottospazi che trasforma i sottospazi in un divisore a incroci normali. Inoltre nel caso di iperpiani questa costruzione è legata alla generalizzazione della equazione di Kniznik-Zamolodchikov ed alla teoria dei nodi, per i sistemi di radici produce dei modelli particolarmente interessati.
I shall discuss a geometric construction, done with De Concini, of a blowup of a configuration of subspaces making it into a divisor with normal crossings. For hyperplanes this is related to a generalization of the Khiznik-Zamolodchikov equation and to knot theory. For root systems this produces a particularly interesting model.
@article{RLIN_1996_9_7_2_a4,
     author = {Procesi, Claudio},
     title = {Complementi di sottospazi e singolarit\`a coniche},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {113--123},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {2},
     year = {1996},
     zbl = {0891.14014},
     mrnumber = {509582},
     language = {it},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a4/}
}
TY  - JOUR
AU  - Procesi, Claudio
TI  - Complementi di sottospazi e singolarità coniche
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 113
EP  - 123
VL  - 7
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a4/
LA  - it
ID  - RLIN_1996_9_7_2_a4
ER  - 
%0 Journal Article
%A Procesi, Claudio
%T Complementi di sottospazi e singolarità coniche
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 113-123
%V 7
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a4/
%G it
%F RLIN_1996_9_7_2_a4
Procesi, Claudio. Complementi di sottospazi e singolarità coniche. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 113-123. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a4/

[1] K. Aomoto, Functions hyperlogarithmiques et groupes de monodromie unipotents. J. Fac. Univ. Tokyo, 25, 1978, 149-156. | MR | Zbl

[2] V. I. Arnold, The Vassiliev theory of discriminants and knots. In: First European Congress of Mathematics. Birkhäuser, Basel 1994. | MR | Zbl

[3] D. Bar Natan, Non associative tangles. Harvard 1993, preprint. | MR | Zbl

[4] D. Bar Natan, On the Vassiliev knot invariants. Topology, 34, 1995, 423-472. | DOI | MR | Zbl

[5] N. Bourbaki, Groupes et algèbres de Lie Ch. 4-5-6. Hermann, Paris 1981. | Zbl

[6] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Inv. Math., 12, 1971, 57-61. | fulltext EuDML | MR | Zbl

[7] E. Brieskorn, Sur les groupes de tresses (d'après V. I. Arnold). Séminaire Bourbaki 1971/72, S.L.N., 317, 1973. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[8] P. Cartier, Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds. C.R. Acad. Sci. Paris, Sér. I Math., 316, 1993, 1205-1210. | MR | Zbl

[9] K. T. Chen, Iterated integrals of differential forms and loop space cohomology. Ann. of Math., 1973, 217-246. | MR | Zbl

[10] I. V. Cherednik, Generalized Braid Groups and local r-matrix systems. Doklady Akad. Nauk SSSR, 307, 1989, 27-34. | MR | Zbl

[11] I. V. Cherednik, Monodromy representations for generalized Knizhnik-Zamolodchikov equations and Hecke algebras. Publ. RIMS, Kyoto Univ., 27, 1991, 711-726. | fulltext mini-dml | DOI | MR | Zbl

[12] C. De Concini - C. Procesi, Wonderful models of subspace arrangements. Selecta Mathematica, 1, 1995, 459-494. | DOI | MR | Zbl

[13] C. De Concini - C. Procesi, Hyperplane arrangements and holonomy equations. Selecta Mathematica, 1, 1995, 495-535. | DOI | MR | Zbl

[14] P. Deligne, Les immeubles de groupes de tresses généralisés. Invent. Math., 17, 1972, 273-302. | fulltext EuDML | MR | Zbl

[15] P. Deligne, Le groupe fondamental de la droite projective moins trois points. In: Galois groups over \( \mathbf{Q} \) Q . Ed. Ihara, Ribet, Serre, Publ. M.S.R.L., 16, 1987, 79-298. | DOI | MR | Zbl

[16] V. G. Drinfeld, Quasi Hopf algebras. Leningrad Math. J., 1, 1990, 1419-1457. | MR

[17] V. G. Drinfeld, On quasi triangular quasi-Hopf algebras and a group closely connected with \( Gal(\bar{\mathbf{Q}}/\mathbf{Q}) \). Leningrad Math. J., 2, 1991, 829-860. | MR | Zbl

[18] J. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Adv. Math., 29, 1992. | Zbl

[19] M. M. Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation. J. Pure and Appl. Alg., 85, 1993, 119-142. | DOI | MR | Zbl

[20] C. Kassel, Quantum Groups. Graduate Texts in Math. Springer, 155, 1995. | DOI | MR | Zbl

[21] S. Keel, Intersection theory of moduli space of stable N-pointed curves of genus 0. T.A.M.S., 330, 1992, 545-574. | DOI | MR | Zbl

[22] T. Khono, On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J., 93, 1983, 21-37. | fulltext mini-dml | MR | Zbl

[23] T. Khono, Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier, 37, 1987, 139-160. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[24] V. G. Kniznik - A. B. Zamolodchikov, Current algebra and the Wess-Zumino model in two dimensions. Soviet J. on Nuclear Physics, 247, 1984, 83-103. | DOI | MR | Zbl

[25] M. Kontsevich, Vassilev's knot invariant. Advances in Soviet Math., 16, 1993, 137-150. | MR | Zbl

[26] T. Q. T. Le - J. Murakani, Representations of the category of tangles by Kontsevich's iterated integral. Max-Planck-Institut Bonn, preprint. | fulltext mini-dml | Zbl

[27] S. Piunikhin, Combinatorial expression for universal Vassilev's link invariant. Harvard Univ. 1993, preprint. | fulltext mini-dml | MR | Zbl

[28] V. A. Vassiliev, Complements of discriminants of smooth maps. A.M.S. Transl., 98, 1992. | Zbl