The growth of solutions of algebraic differential equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 67-73.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^{(n)}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.
Sia \( f(z) \) una funzione meromorfa o intera dell'equazione \( P(z, f, f', \ldots , f^{(n)}) = 0 \), dove \( P \) è un polinomio in tutti i suoi termini. Esiste una limitazione della crescita di \( f \), considerata rispetto alla sua caratteristica \( T(r, f) \)? La risposta a tale questione non è in generale nota. L'autore e i Teoremi Gol'dberg e Steinmetz danno una risposta positiva in alcuni casi. Vengono anche forniti alcuni esempi.
@article{RLIN_1996_9_7_2_a1,
     author = {Hayman, Walter K.},
     title = {The growth of solutions of algebraic differential equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {2},
     year = {1996},
     zbl = {0268.34010},
     mrnumber = {320400},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a1/}
}
TY  - JOUR
AU  - Hayman, Walter K.
TI  - The growth of solutions of algebraic differential equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 67
EP  - 73
VL  - 7
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a1/
LA  - en
ID  - RLIN_1996_9_7_2_a1
ER  - 
%0 Journal Article
%A Hayman, Walter K.
%T The growth of solutions of algebraic differential equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 67-73
%V 7
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a1/
%G en
%F RLIN_1996_9_7_2_a1
Hayman, Walter K. The growth of solutions of algebraic differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 67-73. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_2_a1/

[1] S. B. Bank, On determining the growth of meromorphic solutions of algebraic differential equations having arbitrary entire coefficients. Nagoya Math. J., 49, 1973, 53-65. | fulltext mini-dml | MR | Zbl

[2] S. B. Bank, Some results on Analytic and Meromorphic Solutions of Algebraic Differential Equations. Advances in Mathematics, 15, 1975, 41-61. | MR | Zbl

[3] S. B. Bank, On the existence of meromorphic solutions of differential equations having arbitrarily rapid growth. J. reine angew. Math., 288, 1976, 176-182. | fulltext EuDML | MR | Zbl

[4] N. Basu - S. Bose - T. Vijayaraghavan, A simple example for a Theorem of Vijayaraghavan. J. London Math. Soc., 12, 1937, 250-252. | Jbk 63.0419.02 | MR

[5] E. Borel, Mémoire sur les séries divergentes. Ann. Sci. École Norm. Sup., 16, 1899, 9-136. | fulltext EuDML | fulltext mini-dml | Jbk 30.0230.03

[6] A. A. Gol'Dberg, On single valued solutions of first order differential equations. Ukrain Mat. Zh., 8, 1956, 254-261 (Russian). | MR | Zbl

[7] W. K. Hayman, The local growth of power series: A survey of the Wiman-Valiron method. Canad. Math. Bull., 17 (3), 1974, 317-358. | MR | Zbl

[8] I. Laine, Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin-New York 1993. | DOI | MR | Zbl

[9] N. Steinmetz, Über das Anwachsen der Lösungen homogener algebraischer Differentialgleichungen zweiter Ordnung. Manuscripta Math., 32, 1980, 303-308. | fulltext EuDML | DOI | MR | Zbl

[10] N. Steinmetz, Über die eindeutigen Lösungen einer homogenen algebraischer Differentialgleichung zweiter Ordnung. Ann. Acad. Sci. Fenn., AI7, 1982, 177-188. | MR | Zbl

[11] G. Valiron, Fonctions Analytiques. Presses Universitaires de France, Paris 1954. | MR | Zbl

[12] T. Vijayaraghavan, Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci., Paris, 194, 1932, 827-829. | Zbl

[13] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen. Springer, Berlin-Göttingen-Heidelberg 1955. | MR | Zbl