Existence and continuous dependence results in the dynamical theory of piezoelectricity
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The paper is concerned with the dynamical theory of linear piezoelectricity. First, an existence theorem is derived. Then, the continuous dependence of the solutions upon the initial data and body forces is investigated.
Nell'ambito della teoria lineare dei processi dinamici dei materiali piezoelettrici, si studiano teoremi di esistenza e di dipendenza continua. 1. INTRODUCTION
@article{RLIN_1996_9_7_1_a5,
     author = {Ciarletta, Michele},
     title = {Existence and continuous dependence results in the dynamical theory of piezoelectricity},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {1},
     year = {1996},
     zbl = {0885.35132},
     mrnumber = {153286},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a5/}
}
TY  - JOUR
AU  - Ciarletta, Michele
TI  - Existence and continuous dependence results in the dynamical theory of piezoelectricity
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 59
EP  - 66
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a5/
LA  - en
ID  - RLIN_1996_9_7_1_a5
ER  - 
%0 Journal Article
%A Ciarletta, Michele
%T Existence and continuous dependence results in the dynamical theory of piezoelectricity
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 59-66
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a5/
%G en
%F RLIN_1996_9_7_1_a5
Ciarletta, Michele. Existence and continuous dependence results in the dynamical theory of piezoelectricity. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 59-66. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a5/

[1] M. C. Dokmeci, Recent advances: vibrations of piezoelectric crystals. Int. J. Engng. Sci., 18, 1980, 431-448. | Zbl

[2] W. Nowacki, Mathematical models of phenomenological piezoelectricity. In: O. BRULIN - R. K. T. HSIEH (eds.), New Problems in Mechanics of Continua. University of Waterloo Press, Ontario 1983, 29. | Zbl

[3] R. A. Toupin, A dynamical theory of elastic dielectrics. Int. J. Engng. Sci., 1, 1963, 101-126. | MR

[4] A. C. Eringen - R. C. Dixon, A dynamical theory of polar elastic dielectrics. I, II. Int. J. Engng. Sci., 3, 1965, 359-398. | MR

[5] H. Parkus, Magnetothermoelasticity. In: CISM Lectures Notes, Springer-Verlag, vol. 118, Berlin-Heidelberg-New York 1972. | Zbl

[6] R. A. Grot, Relativiste continuum physics. Electromagnetic interactions. In: A. C. ERINGEN (ed.), Continuum Physics. Academic Press, vol. III, New York 1976. | MR

[7] A. G. Maugin, Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam 1987. | MR | Zbl

[8] D. Ieşan, Plane strain problems in piezoelectricity. Int. J. Engng. Sci., 25, 1987, 1511-1523. | DOI | MR | Zbl

[9] D. Ieşan, Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity. Int. J. Engng. Sci., 28, 1990, 1139-1149. | DOI | MR | Zbl

[10] C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuum mechanics. In: P. GERMAIN - B. NAYROLES (eds.), Applications of Methods of Functional Analysis to Problems in Mechanics. Lecture Notes in Mathematics, vol. 503, Springer, Berlin 1976, 295-306. | Zbl

[11] C. B. Navarro - R. Quintanilla, On existence and uniqueness in incremental thermoelasticity. ZAMP, 35, 1984, 206-215. | DOI | MR | Zbl

[12] G. Fichera, Existence theorems in elasticity. In: C. TRUESDELL (ed.), Flügge's Handbuch der Physik, vol. VIa/2, Springer-Verlag, Berlin-Heidelberg-New York 1972, 347-388. | Zbl

[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo 1983. | DOI | MR | Zbl

[14] C. M. Dafermos, The second law of thermodynamics and stability. Arch. Rational Mech. Anal., 70, 1979, 167-179. | DOI | MR | Zbl

[15] C. E. Beevers - R. E. Craine, On the thermodynamics and stability of deformable dielectrics. Appl. Sci. Res., 37, 1981, 241-256. | DOI | MR | Zbl