Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 41-46.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection \( C \subset \mathbb{P}^{3} \) should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.
Con motivazione dalla nozione di Seshadri-ampiezza discussa in [11], si congettura che il genere e il grado di un'intersezione completa insiemistica liscia \( C \subset \mathbb{P}^{3} \) soddisfino un'opportuna diseguaglianza. La congettura è verificata per varie classi di intersezioni complete insiemistiche.
@article{RLIN_1996_9_7_1_a3,
     author = {Paoletti, Roberto},
     title = {Some remarks on {Set-theoretic} {Intersection} {Curves} in \( {\mathbb{P}^{3}} \)},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {1},
     year = {1996},
     zbl = {0882.14015},
     mrnumber = {605335},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a3/}
}
TY  - JOUR
AU  - Paoletti, Roberto
TI  - Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 41
EP  - 46
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a3/
LA  - en
ID  - RLIN_1996_9_7_1_a3
ER  - 
%0 Journal Article
%A Paoletti, Roberto
%T Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 41-46
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a3/
%G en
%F RLIN_1996_9_7_1_a3
Paoletti, Roberto. Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 41-46. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a3/

[1] W. Barth, Kummer surfaces associated with the Mumford-Horrocks bundle. In: A. BEAUVILLE (éd.), Journées de Géométrie Algébrique d'Angers (Angers, 1979). Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 29-48. | MR | Zbl

[2] F. Catanese, Babbage's conjecture, contact of surfaces, symmetric determinental varieties and applications. Inv. Math., 63, 1981, 433-466. | fulltext EuDML | DOI | MR | Zbl

[3] C. Ciliberto, Canonical Surfaces with \( p_{g} = p_{a} = 4 \) and \( K^{2} = 5, \ldots , 10 \). Duke Math. J., 48, 1981, 121-157. | fulltext mini-dml | MR | Zbl

[4] W. Fulton, Intersection Theory. Springer-Verlag, 1984. | MR | Zbl

[5] W. Fulton - R. Lazarsfeld, Positive polynomials for ample vector bundles. Ann. Math., 118, 1983, 35-60. | DOI | MR | Zbl

[6] J. E. Goodman, Affine open subsets of algebraic varieties and ample divisors. Ann. Math., 89, 1969, 160-183. | MR | Zbl

[7] R. Hartshorne, Complete intersections in characteristic \( p > 0 \). Am. J. Math., 101, 1979, 380-383. | DOI | MR | Zbl

[8] D. Jaffe, Smooth curves on a cone which pass through its vertex. Manuscripta Mathematica, 73, 1991, 187-205. | fulltext EuDML | DOI | MR | Zbl

[9] P. Le Barz, Formules pour les trisécantes des surfaces algébriques. L'Enseign. Math., 33, 1987, 1-66. | MR | Zbl

[10] C. Okonek - M. Schneider - H. Spindler, Vector bundles on complex projective spaces. Progr. in Math., vol. 56, Birkhäuser, Boston 1985. | MR | Zbl

[11] R. Paoletti, Seshadri positive curves in a smooth projective 3-fold. Rend. Mat. Acc. Lincei, s. 9, v. 6, 1995, 259-274. | fulltext bdim | MR | Zbl

[12] C. Peskine - L. Szpiro, Liaison des variétés algébriques. Inv. Math., 26, 1974, 271-302. | fulltext EuDML | MR | Zbl

[13] P. Rao, On self-linked curves. Duke Math. J., 49, 1982, 251-273. | fulltext mini-dml | MR | Zbl