On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 17-30.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a \( n \)-dimensional cone \( K = K_{d} \times \mathbb{R}^{n-d} \) is given, where \( K_{d} \) is an arbitrary open cone in \( \mathbb{R}^{d} \) and \( n > d > 1 \).
Viene data una descrizione di tutte le soluzioni «power-logarithmic» del problema omogeneo di Dirichlet per un sistema fortemente ellittico in un cono \( n \)-dimensionale \( K = K_{d} \times \mathbb{R}^{n-d} \), dove \( K_{d} \) è un qualsiasi cono aperto in \( \mathbb{R}^{d} \) e \( n > d > 1 \).
@article{RLIN_1996_9_7_1_a1,
     author = {Kozlov, Vladimir A. and Maz'ya, Vladimir G.},
     title = {On {\guillemotleft}power-logarithmic{\guillemotright} solutions of the {Dirichlet} problem for elliptic systems in \( {K_{d}} \times {\mathbb{R}^{n-d}} \), where \( {K_{d}} \) is a d-dimensional cone},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {Ser. 9, 7},
     number = {1},
     year = {1996},
     zbl = {0871.35032},
     mrnumber = {226187},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a1/}
}
TY  - JOUR
AU  - Kozlov, Vladimir A.
AU  - Maz'ya, Vladimir G.
TI  - On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1996
SP  - 17
EP  - 30
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a1/
LA  - en
ID  - RLIN_1996_9_7_1_a1
ER  - 
%0 Journal Article
%A Kozlov, Vladimir A.
%A Maz'ya, Vladimir G.
%T On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1996
%P 17-30
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a1/
%G en
%F RLIN_1996_9_7_1_a1
Kozlov, Vladimir A.; Maz'ya, Vladimir G. On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 1, pp. 17-30. https://geodesic-test.mathdoc.fr/item/RLIN_1996_9_7_1_a1/

[1] V. A. Kondrat'Ev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Ob., 16, 1967, 209-292; English transl. in: Trans. Moscow Math. Soc., 16, 1967, 227-313. | MR | Zbl

[2] V. G. Maz'Ya - B. A. Plamenevskii, The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems in a cone. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52, 1975, 110-127; English transl. in: J. Soviet Math., 9, 1978, no. 5. | MR

[3] V. G. Maz'Ya - B. A. Plamenevskii, On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr., 76, 1977, 29-66; English transl. in: Amer. Math. Soc. Transl. (2), vol 123, 1984, 57-88. | MR | Zbl