Gaussian estimates for fundamental solutions to certain parabolic systems.
Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 481-496.
Auscher proved Gaussian upper bound estimates for the fundamental solutions to parabolic equations with complex coefficients in the case when coefficients are time-independent and a small perturbation of real coefficients. We prove the equivalence between the local boundedness property of solutions to a parabolic system and a Gaussian upper bound for its fundamental matrix. As a consequence, we extend Auscher's result to the time dependent case.
@article{PMATES_2004__48_2_41508, author = {Steve Hofmann and Seick Kim}, title = {Gaussian estimates for fundamental solutions to certain parabolic systems.}, journal = {Publicacions Matem\`atiques}, pages = {481-496}, volume = {48}, number = {2}, year = {2004}, zbl = {an:1061.35023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41508/} }
TY - JOUR AU - Steve Hofmann AU - Seick Kim TI - Gaussian estimates for fundamental solutions to certain parabolic systems. JO - Publicacions Matemàtiques PY - 2004 SP - 481 EP - 496 VL - 48 IS - 2 UR - https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41508/ LA - en ID - PMATES_2004__48_2_41508 ER -
Steve Hofmann; Seick Kim. Gaussian estimates for fundamental solutions to certain parabolic systems.. Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 481-496. https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41508/