L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels.
Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 445-479.
Let m be a Radon measure on C without atoms. In this paper we prove that if the Cauchy transform is bounded in L2(m), then all 1-dimensional Calderón-Zygmund operators associated to odd and sufficiently smooth kernels are also bounded in L2(m).
@article{PMATES_2004__48_2_41506, author = {Xavier Tolsa}, title = {L2 boundedness of the {Cauchy} transform implies {L2} boundedness of all {Calder\'on-Zygmund} operators associated to odd kernels.}, journal = {Publicacions Matem\`atiques}, pages = {445-479}, volume = {48}, number = {2}, year = {2004}, zbl = {an:1066.42013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41506/} }
TY - JOUR AU - Xavier Tolsa TI - L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels. JO - Publicacions Matemàtiques PY - 2004 SP - 445 EP - 479 VL - 48 IS - 2 UR - https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41506/ LA - en ID - PMATES_2004__48_2_41506 ER -
%0 Journal Article %A Xavier Tolsa %T L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels. %J Publicacions Matemàtiques %D 2004 %P 445-479 %V 48 %N 2 %U https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41506/ %G en %F PMATES_2004__48_2_41506
Xavier Tolsa. L2 boundedness of the Cauchy transform implies L2 boundedness of all Calderón-Zygmund operators associated to odd kernels.. Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 445-479. https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41506/