Differentiation bases for Sobolev functions on metric spaces.
Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 381-395.
We study Lebesgue points for Sobolev functions over other collections of sets than balls. Our main result gives several conditions for a differentiation basis, which characterize the existence of Lebesgue points outside a set of capacity zero.
@article{PMATES_2004__48_2_41501, author = {Petteri Harjulehto and Juha Kinnunen}, title = {Differentiation bases for {Sobolev} functions on metric spaces.}, journal = {Publicacions Matem\`atiques}, pages = {381-395}, volume = {48}, number = {2}, year = {2004}, zbl = {an:1074.46023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41501/} }
TY - JOUR AU - Petteri Harjulehto AU - Juha Kinnunen TI - Differentiation bases for Sobolev functions on metric spaces. JO - Publicacions Matemàtiques PY - 2004 SP - 381 EP - 395 VL - 48 IS - 2 UR - https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41501/ LA - en ID - PMATES_2004__48_2_41501 ER -
Petteri Harjulehto; Juha Kinnunen. Differentiation bases for Sobolev functions on metric spaces.. Publicacions Matemàtiques, Tome 48 (2004) no. 2, p. 381-395. https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_2_41501/