Counting fixed points of a finitely generated subgroup of Aff [C].
Publicacions Matemàtiques, Tome 48 (2004) no. 1, p. 127-137.
Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.
@article{PMATES_2004__48_1_41493, author = {F. Loray and M. Van Der Put and F. Recher}, title = {Counting fixed points of a finitely generated subgroup of {Aff} {[C].}}, journal = {Publicacions Matem\`atiques}, pages = {127-137}, volume = {48}, number = {1}, year = {2004}, zbl = {an:1122.37038}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/} }
TY - JOUR AU - F. Loray AU - M. Van Der Put AU - F. Recher TI - Counting fixed points of a finitely generated subgroup of Aff [C]. JO - Publicacions Matemàtiques PY - 2004 SP - 127 EP - 137 VL - 48 IS - 1 UR - https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/ LA - en ID - PMATES_2004__48_1_41493 ER -
F. Loray; M. Van Der Put; F. Recher. Counting fixed points of a finitely generated subgroup of Aff [C].. Publicacions Matemàtiques, Tome 48 (2004) no. 1, p. 127-137. https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/