Counting fixed points of a finitely generated subgroup of Aff [C].
Publicacions Matemàtiques, Tome 48 (2004) no. 1, p. 127-137.
Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.
Source:
Zbl
Classification : 37F75, 57M60, 20F38, 34C07
@article{PMATES_2004__48_1_41493,
     author = {F. Loray and M. Van Der Put and F. Recher},
     title = {Counting fixed points of a finitely generated subgroup of {Aff} {[C].}},
     journal = {Publicacions Matem\`atiques},
     pages = {127-137},
     volume = {48},
     number = {1},
     year = {2004},
     zbl = {an:1122.37038},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/}
}
TY  - JOUR
AU  - F. Loray
AU  - M. Van Der Put
AU  - F. Recher
TI  - Counting fixed points of a finitely generated subgroup of Aff [C].
JO  - Publicacions Matemàtiques
PY  - 2004
SP  - 127
EP  - 137
VL  - 48
IS  - 1
UR  - https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/
LA  - en
ID  - PMATES_2004__48_1_41493
ER  - 
%0 Journal Article
%A F. Loray
%A M. Van Der Put
%A F. Recher
%T Counting fixed points of a finitely generated subgroup of Aff [C].
%J Publicacions Matemàtiques
%D 2004
%P 127-137
%V 48
%N 1
%U https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/
%G en
%F PMATES_2004__48_1_41493
F. Loray; M. Van Der Put; F. Recher. Counting fixed points of a finitely generated subgroup of Aff [C].. Publicacions Matemàtiques, Tome 48 (2004) no. 1, p. 127-137. https://geodesic-test.mathdoc.fr/item/PMATES_2004__48_1_41493/