Two weight norm inequality for the fractional maximal operator and the fractional integral operator.
Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 81-101.
New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s < n, [resp. 0 < s < n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 < p < ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.
Source:
Zbl
Classification : 47G10, 46E40, 42B25, 26A33
@article{PMATES_1998__42_1_41336,
     author = {Yves Rakotondratsimba},
     title = {Two weight norm inequality for the fractional maximal operator and the fractional integral operator.},
     journal = {Publicacions Matem\`atiques},
     pages = {81-101},
     volume = {42},
     number = {1},
     year = {1998},
     zbl = {an:0931.42011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41336/}
}
TY  - JOUR
AU  - Yves Rakotondratsimba
TI  - Two weight norm inequality for the fractional maximal operator and the fractional integral operator.
JO  - Publicacions Matemàtiques
PY  - 1998
SP  - 81
EP  - 101
VL  - 42
IS  - 1
UR  - https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41336/
LA  - en
ID  - PMATES_1998__42_1_41336
ER  - 
%0 Journal Article
%A Yves Rakotondratsimba
%T Two weight norm inequality for the fractional maximal operator and the fractional integral operator.
%J Publicacions Matemàtiques
%D 1998
%P 81-101
%V 42
%N 1
%U https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41336/
%G en
%F PMATES_1998__42_1_41336
Yves Rakotondratsimba. Two weight norm inequality for the fractional maximal operator and the fractional integral operator.. Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 81-101. https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41336/