Fatou lemma for the Pettis integral.
Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 67-79.
The purpose of this paper is to present Fatou type results for a sequence of Pettis integrable functions and multifunctions. We prove the non vacuity of the weak upper limit of a sequence of Pettis integrable functions taking their values in a locally convex space and we deduce a Fatou's lemma for a sequence of convex weak compact valued Pettis integrable multifunctions. We prove as well a Lebesgue theorem for a sequence of Pettis integrable multifunctions with values in the space of convex compact sets of a separable Banach space.
@article{PMATES_1998__42_1_41334, author = {Allal Amrani}, title = {Fatou lemma for the {Pettis} integral.}, journal = {Publicacions Matem\`atiques}, pages = {67-79}, volume = {42}, number = {1}, year = {1998}, zbl = {an:0933.28005}, language = {fr}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41334/} }
Allal Amrani. Fatou lemma for the Pettis integral.. Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 67-79. https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41334/