Multidimensional residues and ideal membership.
Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 143-152.
Let I(f) be a zero-dimensional ideal in C[z1, ..., zn] defined by a mapping f. We compute the logarithmic residue of a polynomial g with respect to f. We adapt an idea introduced by Aizenberg to reduce the computation to a special case by means of a limiting process.We then consider the total sum of local residues of g w.r.t. f. If the zeroes of f are simple, this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f. Some applications are given. In particular, the global residue gives, for any polynomial, a canonical representative in the quotient space C[z]/I(f).
Source:
Zbl
Classification : 32C30, 32A25, 32A27
@article{PMATES_1998__42_1_41331,
     author = {Alessandro Perotti},
     title = {Multidimensional residues and ideal membership.},
     journal = {Publicacions Matem\`atiques},
     pages = {143-152},
     volume = {42},
     number = {1},
     year = {1998},
     zbl = {an:0946.32002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/}
}
TY  - JOUR
AU  - Alessandro Perotti
TI  - Multidimensional residues and ideal membership.
JO  - Publicacions Matemàtiques
PY  - 1998
SP  - 143
EP  - 152
VL  - 42
IS  - 1
UR  - https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/
LA  - en
ID  - PMATES_1998__42_1_41331
ER  - 
%0 Journal Article
%A Alessandro Perotti
%T Multidimensional residues and ideal membership.
%J Publicacions Matemàtiques
%D 1998
%P 143-152
%V 42
%N 1
%U https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/
%G en
%F PMATES_1998__42_1_41331
Alessandro Perotti. Multidimensional residues and ideal membership.. Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 143-152. https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/