Multidimensional residues and ideal membership.
Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 143-152.
Let I(f) be a zero-dimensional ideal in C[z1, ..., zn] defined by a mapping f. We compute the logarithmic residue of a polynomial g with respect to f. We adapt an idea introduced by Aizenberg to reduce the computation to a special case by means of a limiting process.We then consider the total sum of local residues of g w.r.t. f. If the zeroes of f are simple, this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f. Some applications are given. In particular, the global residue gives, for any polynomial, a canonical representative in the quotient space C[z]/I(f).
@article{PMATES_1998__42_1_41331, author = {Alessandro Perotti}, title = {Multidimensional residues and ideal membership.}, journal = {Publicacions Matem\`atiques}, pages = {143-152}, volume = {42}, number = {1}, year = {1998}, zbl = {an:0946.32002}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/} }
Alessandro Perotti. Multidimensional residues and ideal membership.. Publicacions Matemàtiques, Tome 42 (1998) no. 1, p. 143-152. https://geodesic-test.mathdoc.fr/item/PMATES_1998__42_1_41331/