Structural Theorems for Quasiasymptotics of Distributions at Infinity
Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Complete structural theorems for quasiasymptotics of distributions are presented in this article.
For this, asymptotically homogeneous functions and associate asymptotically homogeneous functions at infinity
with respect to a slowly varying function are employed.
The proposed analysis, based on the concept of asymptotically and associate asymptotically homogeneous functions,
allows to obtain easier proofs of the structural theorems for quasiasymptotics at infinity in the so far only known case:
when the degree of the quasiasymptotic is not a negative integer.
Furthermore, new structural theorems for the case of negative integral degrees are obtained by this method.
Mots-clés :
Slowly varying functions, quasiasymptotics of distributions, almost homogeneous functions
@article{PIM_2008_N_S_84_98_a8, author = {Jasson Vindas}, title = {Structural {Theorems} for {Quasiasymptotics} of {Distributions} at {Infinity}}, journal = {Publications de l'Institut Math\'ematique}, pages = {159 - 174}, publisher = {mathdoc}, volume = {(N.S.) 84}, number = {98}, year = {2008}, zbl = {1199.46094}, url = {https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a8/} }
TY - JOUR AU - Jasson Vindas TI - Structural Theorems for Quasiasymptotics of Distributions at Infinity JO - Publications de l'Institut Mathématique PY - 2008 SP - 159 EP - 174 VL - (N.S.) 84 IS - 98 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a8/ ID - PIM_2008_N_S_84_98_a8 ER -
Jasson Vindas. Structural Theorems for Quasiasymptotics of Distributions at Infinity. Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98. https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a8/