Symmetries and Integrability
Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This is a survey on finite-dimensional integrable dynamical systems related to Hamiltonian $G$-actions. Within a framework of noncommutative integrability we study integrability of $G$-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamiltonian flows restricted to their invariant submanifolds generalizing classical Hess--Appel'rot case of a heavy rigid body motion.
@article{PIM_2008_N_S_84_98_a0,
     author = {Bo\v{z}idar Jovanovi\'c},
     title = {Symmetries and {Integrability}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 - 36},
     publisher = {mathdoc},
     volume = {(N.S.) 84},
     number = {98},
     year = {2008},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/}
}
TY  - JOUR
AU  - Božidar Jovanović
TI  - Symmetries and Integrability
JO  - Publications de l'Institut Mathématique
PY  - 2008
SP  - 1 
EP  -  36
VL  - (N.S.) 84
IS  - 98
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/
ID  - PIM_2008_N_S_84_98_a0
ER  - 
%0 Journal Article
%A Božidar Jovanović
%T Symmetries and Integrability
%J Publications de l'Institut Mathématique
%D 2008
%P 1 - 36
%V (N.S.) 84
%N 98
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/
%F PIM_2008_N_S_84_98_a0
Božidar Jovanović. Symmetries and Integrability. Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98. https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/