Symmetries and Integrability
Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This is a survey on finite-dimensional integrable dynamical systems
related to Hamiltonian $G$-actions.
Within a framework of noncommutative integrability
we study integrability of $G$-invariant systems, collective motions and reduced integrability.
We also consider reductions of the Hamiltonian flows
restricted to their invariant submanifolds generalizing classical Hess--Appel'rot case
of a heavy rigid body motion.
@article{PIM_2008_N_S_84_98_a0, author = {Bo\v{z}idar Jovanovi\'c}, title = {Symmetries and {Integrability}}, journal = {Publications de l'Institut Math\'ematique}, pages = {1 - 36}, publisher = {mathdoc}, volume = {(N.S.) 84}, number = {98}, year = {2008}, url = {https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/} }
Božidar Jovanović. Symmetries and Integrability. Publications de l'Institut Mathématique, (N.S.) 84 (2008) no. 98. https://geodesic-test.mathdoc.fr/item/PIM_2008_N_S_84_98_a0/