Asymptotic Properties of Convolution Products of Functions
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The asymptotic behaviour of convolution products of the form
$\int_0^x f(x-y)g(y)\,dy$ is studied. From our results we obtain
asymptotic expansions of the form
$$
R(x) := \int_o^x f(x-y)g(y) dy - f(x)\int^\infty g(y) dy
- g(x)\int_0^\infty f(y) dy = O(m(x)).
$$
Under rather mild conditions on $f,g$ and $m$ the $O$-term can be
calculated more explicitly as
$$
R(x)-(f(x-1)-f(x))\int_0^\infty yg(y) dy+(g(x-1)
-g(x))\int_0^\infty yf(y) dy + o(m(x)).
$$
An application in probability theory is included.
@article{PIM_1988_N_S_43_57_a5, author = {Edward Omey}, title = {Asymptotic {Properties} of {Convolution} {Products} of {Functions}}, journal = {Publications de l'Institut Math\'ematique}, pages = {41 - 57}, publisher = {mathdoc}, volume = {(N.S.) 43}, number = {57}, year = {1988}, url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/} }
Edward Omey. Asymptotic Properties of Convolution Products of Functions. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/