Asymptotic Properties of Convolution Products of Functions
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The asymptotic behaviour of convolution products of the form $\int_0^x f(x-y)g(y)\,dy$ is studied. From our results we obtain asymptotic expansions of the form $$ R(x) := \int_o^x f(x-y)g(y) dy - f(x)\int^\infty g(y) dy - g(x)\int_0^\infty f(y) dy = O(m(x)). $$ Under rather mild conditions on $f,g$ and $m$ the $O$-term can be calculated more explicitly as $$ R(x)-(f(x-1)-f(x))\int_0^\infty yg(y) dy+(g(x-1) -g(x))\int_0^\infty yf(y) dy + o(m(x)). $$ An application in probability theory is included.
@article{PIM_1988_N_S_43_57_a5,
     author = {Edward Omey},
     title = {Asymptotic {Properties} of {Convolution} {Products} of {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 - 57},
     publisher = {mathdoc},
     volume = {(N.S.) 43},
     number = {57},
     year = {1988},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/}
}
TY  - JOUR
AU  - Edward Omey
TI  - Asymptotic Properties of Convolution Products of Functions
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 41 
EP  -  57
VL  - (N.S.) 43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/
ID  - PIM_1988_N_S_43_57_a5
ER  - 
%0 Journal Article
%A Edward Omey
%T Asymptotic Properties of Convolution Products of Functions
%J Publications de l'Institut Mathématique
%D 1988
%P 41 - 57
%V (N.S.) 43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/
%F PIM_1988_N_S_43_57_a5
Edward Omey. Asymptotic Properties of Convolution Products of Functions. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a5/