A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 137 .

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that a helicodial surface has constant mean curvature if and only if its principal axes make an angle constant with the orbits. Moreover, the arguments used lead to a simple proof of the fact that all helicodial surfaces with constant mean curvature H can be isometrically deformed, trough helicodial surfaces of the same H, into surfaces of revolution of the same H (Delaunay surfaces).
Classification : 53A05
@article{PIM_1988_N_S_43_57_a16,
     author = {Ioannis M. Roussos},
     title = {A {Geometric} {Characterization} of {Helicodial} {Surfaces} of {Constant} {Mean} {Curvature}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {137 },
     publisher = {mathdoc},
     volume = {_N_S_43},
     number = {57},
     year = {1988},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/}
}
TY  - JOUR
AU  - Ioannis M. Roussos
TI  - A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 137 
VL  - _N_S_43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/
LA  - en
ID  - PIM_1988_N_S_43_57_a16
ER  - 
%0 Journal Article
%A Ioannis M. Roussos
%T A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature
%J Publications de l'Institut Mathématique
%D 1988
%P 137 
%V _N_S_43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/
%G en
%F PIM_1988_N_S_43_57_a16
Ioannis M. Roussos. A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 137 . https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/