A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that a helicodial surface has constant mean
curvature if and only if its principal axes make an angle constant with
the orbits. Moreover, the arguments used lead to a simple proof of the
fact that all helicodial surfaces with constant mean curvature $H$ can
be isometrically deformed, trough helicodial surfaces of the same $H$,
into surfaces of revolution of the same $H$ (Delaunay surfaces).
@article{PIM_1988_N_S_43_57_a16, author = {Ioannis M. Roussos}, title = {A {Geometric} {Characterization} of {Helicodial} {Surfaces} of {Constant} {Mean} {Curvature}}, journal = {Publications de l'Institut Math\'ematique}, pages = {137 - 142}, publisher = {mathdoc}, volume = {(N.S.) 43}, number = {57}, year = {1988}, url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/} }
TY - JOUR AU - Ioannis M. Roussos TI - A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature JO - Publications de l'Institut Mathématique PY - 1988 SP - 137 EP - 142 VL - (N.S.) 43 IS - 57 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/ ID - PIM_1988_N_S_43_57_a16 ER -
%0 Journal Article %A Ioannis M. Roussos %T A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature %J Publications de l'Institut Mathématique %D 1988 %P 137 - 142 %V (N.S.) 43 %N 57 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/ %F PIM_1988_N_S_43_57_a16
Ioannis M. Roussos. A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/