Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give the definition of the quasiasymptotic behaviour at
$0$ of Schwartz distributions from $\Cal D'$ and compare this
definition with the definition of the quasiasymptotic of tempered
distributions at $0$ [2].
@article{PIM_1988_N_S_43_57_a15, author = {Stevan Pilipovi\'c}, title = {Some {Properties} of the {Quasiasymptotic} of {Schwartz} {Distributions} {Part} ii: {Quasiasymptotic} at 0}, journal = {Publications de l'Institut Math\'ematique}, pages = {131 - 135}, publisher = {mathdoc}, volume = {(N.S.) 43}, number = {57}, year = {1988}, url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/} }
TY - JOUR AU - Stevan Pilipović TI - Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0 JO - Publications de l'Institut Mathématique PY - 1988 SP - 131 EP - 135 VL - (N.S.) 43 IS - 57 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/ ID - PIM_1988_N_S_43_57_a15 ER -
%0 Journal Article %A Stevan Pilipović %T Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0 %J Publications de l'Institut Mathématique %D 1988 %P 131 - 135 %V (N.S.) 43 %N 57 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/ %F PIM_1988_N_S_43_57_a15
Stevan Pilipović. Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/