Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give the definition of the quasiasymptotic behaviour at $0$ of Schwartz distributions from $\Cal D'$ and compare this definition with the definition of the quasiasymptotic of tempered distributions at $0$ [2].
@article{PIM_1988_N_S_43_57_a15,
     author = {Stevan Pilipovi\'c},
     title = {Some {Properties} of the {Quasiasymptotic} of {Schwartz} {Distributions} {Part} ii: {Quasiasymptotic} at 0},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {131 - 135},
     publisher = {mathdoc},
     volume = {(N.S.) 43},
     number = {57},
     year = {1988},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/}
}
TY  - JOUR
AU  - Stevan Pilipović
TI  - Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 131 
EP  -  135
VL  - (N.S.) 43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/
ID  - PIM_1988_N_S_43_57_a15
ER  - 
%0 Journal Article
%A Stevan Pilipović
%T Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
%J Publications de l'Institut Mathématique
%D 1988
%P 131 - 135
%V (N.S.) 43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/
%F PIM_1988_N_S_43_57_a15
Stevan Pilipović. Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/