Uniform C-convexity of Lp, 0 p = 1
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 117 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We extend a result of Globevnik by proving that Lp spaces with $0
Classification : 46E30 46E20
@article{PIM_1988_N_S_43_57_a13,
     author = {Miroslav Pavlovi\'c},
     title = {Uniform {C-convexity} of {Lp,} 0 < p <= 1},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {117 },
     publisher = {mathdoc},
     volume = {_N_S_43},
     number = {57},
     year = {1988},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/}
}
TY  - JOUR
AU  - Miroslav Pavlović
TI  - Uniform C-convexity of Lp, 0 < p <= 1
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 117 
VL  - _N_S_43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/
LA  - en
ID  - PIM_1988_N_S_43_57_a13
ER  - 
%0 Journal Article
%A Miroslav Pavlović
%T Uniform C-convexity of Lp, 0 < p <= 1
%J Publications de l'Institut Mathématique
%D 1988
%P 117 
%V _N_S_43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/
%G en
%F PIM_1988_N_S_43_57_a13
Miroslav Pavlović. Uniform C-convexity of Lp, 0 < p <= 1. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 117 . https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/