Uniform C-convexity of Lp, 0 p = 1
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We extend a result of Globevnik by proving that $L^p$ spaces with $0
@article{PIM_1988_N_S_43_57_a13,
     author = {Miroslav Pavlovi\'c},
     title = {Uniform {C-convexity} of {Lp,} 0 < p <= 1},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {117 - 124},
     publisher = {mathdoc},
     volume = {(N.S.) 43},
     number = {57},
     year = {1988},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/}
}
TY  - JOUR
AU  - Miroslav Pavlović
TI  - Uniform C-convexity of Lp, 0 < p <= 1
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 117 
EP  -  124
VL  - (N.S.) 43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/
ID  - PIM_1988_N_S_43_57_a13
ER  - 
%0 Journal Article
%A Miroslav Pavlović
%T Uniform C-convexity of Lp, 0 < p <= 1
%J Publications de l'Institut Mathématique
%D 1988
%P 117 - 124
%V (N.S.) 43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/
%F PIM_1988_N_S_43_57_a13
Miroslav Pavlović. Uniform C-convexity of Lp, 0 < p <= 1. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a13/