On a Problem of Erdös and Ivić
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let us usual $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime factors and the number of total prime factors of $n$ respectively. Asymptotic formulas for the sum $\underset{2\leq n\leq x} \to \sum n^{-1/\Omega (n)}$ and the logarithm of the sum $\sum\limits{2\leq n\leq x} n^{-1/\omega(n)}$ are derived.
@article{PIM_1988_N_S_43_57_a1,
     author = {Xuan Tizuo},
     title = {On a {Problem} of {Erd\"os} and {Ivi\'c}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {9 - 15},
     publisher = {mathdoc},
     volume = {(N.S.) 43},
     number = {57},
     year = {1988},
     url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/}
}
TY  - JOUR
AU  - Xuan Tizuo
TI  - On a Problem of Erdös and Ivić
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 9 
EP  -  15
VL  - (N.S.) 43
IS  - 57
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/
ID  - PIM_1988_N_S_43_57_a1
ER  - 
%0 Journal Article
%A Xuan Tizuo
%T On a Problem of Erdös and Ivić
%J Publications de l'Institut Mathématique
%D 1988
%P 9 - 15
%V (N.S.) 43
%N 57
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/
%F PIM_1988_N_S_43_57_a1
Xuan Tizuo. On a Problem of Erdös and Ivić. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/