On Dinstances in Some Bipartite Graphs
Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $d(v|G)$ be the sum of the dinstances between a vertex
$v$ of a graph $G$ and all other vertices of $G$. Let $W (G)$ be the
sum of the distances between all pairs of vertices of $G$. A class
{\bf C}$(k)$ of bipartite graphs is found, such that $d(v|G)\equiv 1\pmod k$
holds for an arbitrary vertex of an arbitrary member of
{\bf C}$(k)$. Further, for two members $G$ and $H$ of {\bf C}$(k)$,
having equal cyclomatic number, $W(G)\equiv W(H)\pmod{2k^2}$.
@article{PIM_1988_N_S_43_57_a0, author = {Ivan Gutman}, title = {On {Dinstances} in {Some} {Bipartite} {Graphs}}, journal = {Publications de l'Institut Math\'ematique}, pages = {3 - 8}, publisher = {mathdoc}, volume = {(N.S.) 43}, number = {57}, year = {1988}, url = {https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a0/} }
Ivan Gutman. On Dinstances in Some Bipartite Graphs. Publications de l'Institut Mathématique, (N.S.) 43 (1988) no. 57. https://geodesic-test.mathdoc.fr/item/PIM_1988_N_S_43_57_a0/