Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2023_14_a2, author = {A. M. Zubkov}, title = {Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {55--70}, publisher = {mathdoc}, volume = {14}, year = {2023}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/MVK_2023_14_a2/} }
TY - JOUR AU - A. M. Zubkov TI - Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances JO - Matematičeskie voprosy kriptografii PY - 2023 SP - 55 EP - 70 VL - 14 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MVK_2023_14_a2/ LA - ru ID - MVK_2023_14_a2 ER -
A. M. Zubkov. Statistical tests for uniformity of distribution and independence of vectors based on pairwise distances. Matematičeskie voprosy kriptografii, Tome 14 (2023), pp. 55-70. https://geodesic-test.mathdoc.fr/item/MVK_2023_14_a2/
[1] Bakirov N.K., Rizzo M.L., Székely G.J., “A multivariate nonparametric test of independence”, J. Multivar. Anal., 97 (2006), 1742–1756 | DOI | MR | Zbl
[2] Bartoszyński R., Pearl D.K., Lawrence J., “A multidimensional goodness-of-fit test based on interpoint distances”, J. Amer. Statist. Assoc., 92(438) (1997), 577–586 | MR | Zbl
[3] Berrendero J., Cuevas A., Vasquez F., “Testing multivariate uniformity: the distance-to-boundary method”, Canad. J. Statist., 34 (2006), 693–707 | DOI | MR | Zbl
[4] Berrendero J., Cuevas A., Pateiro-Lopez B., “A multivariate uniformity test for the case of unknown support”, Statistics and Computing, 22 (2012), 259–271 | DOI | MR | Zbl
[5] Berrendero J., Cuevas A., Pateiro-Lopez B., “Testing uniformity for the case of a planar unknown support”, Canad. J. Statist., 40 (2012), 378–395 | DOI | MR | Zbl
[6] Bickel P.J., Breiman L., “Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test”, Ann. Probab., 11:1 (1983), 185–214 | DOI | MR | Zbl
[7] Ebner B., Henze N., Yukich J.E., “Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances”, J. Multivar. Anal., 165 (2018), 231–242 | DOI | MR | Zbl
[8] Jain A., Xu X., Ho T., Xiao F., “Uniformity testing using minimal spanning tree”, Proc. 16th Int. Conf. Pattern Recognition, v. 4, 2002, 281–284 | DOI
[9] Jammalamadaka S. R., Zhou S., “Goodness of fit in multidimensions based on nearest neighbor distances”, J. Nonparam. Statist., 2 (1993), 271–284 | DOI | MR | Zbl
[10] Janson S., “Maximal spacings in several dimensions”, Ann. Probab., 15:1 (1987), 274–280 | DOI | MR | Zbl
[11] Gretton A., Györfi L., “Consistent nonparametric tests of independence”, J. Machine Learning Research, 11 (2010), 1391–1423 | MR | Zbl
[12] Heller R., Heller Y., Gorfine M., A consistent multivariate test of association based on ranks of distances, 2012, arXiv: math/1201.3522v3 | MR
[13] Heller R., Gorfine M., Heller Y., “A class of multivariate distribution-free tests of independence based on graphs”, J. Statist. Plan. Inference, 142:12 (2012), 3097–3106 | DOI | MR | Zbl
[14] Hoffman R., Jain A., “A test of randomness based on the minimal spanning tree”, Patt. Recogn. Lett., 1983, 175–180 | DOI
[15] Pan G., Gao J., Yang Y., Guo M., Independence test for high dimensional random vectors, 2012, arXiv: math.ST/1205.6607
[16] Petrie A., Willemain T/R/, “An empirical study of tests for uniformity in multidimensional data”, Computat. Statist. Data Anal., 64 (2013), 253–268 | DOI | MR | Zbl
[17] Roy A., Ghosh A.K., “Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors”, Statist. and Probab. Letters, 164 (2020), 108793 | DOI | MR | Zbl
[18] Steele J., “Growth rates of Euclidean minimal spanning trees with power-weighted edges”, Ann. Probab., 16 (1988), 1767–1787 | DOI | MR | Zbl
[19] Székely G.J., Rizzo M.L., “Energy statistics: A class of statistics based on distances”, J. Statist. Plann. Inference, 143 (2013), 1249–1272 | DOI | MR
[20] Tenreiro C., “On the finite sample behavior of fixed bandwidth Bickel–Rosenblatt test for univariate and multivariate uniformity”, Commun. Statist. Simul. and Comput., 36 (2007), 827–846 | DOI | MR | Zbl
[21] Yang M., Modarres R., “Multivariate tests of uniformity”, Stat. Papers, 58:3 (2017), 627–639 | DOI | MR | Zbl