Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2023_26_1_a7, author = {M. A. Skvortsova}, title = {Estimates of solutions in a model of antiviral immune response}, journal = {Matemati\v{c}eskie trudy}, pages = {150--175}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a7/} }
M. A. Skvortsova. Estimates of solutions in a model of antiviral immune response. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 150-175. https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a7/
[1] L. Yu. Anapolskii, S. V. Timofeev, “Estimations of attractive region of stable equilibrium points for Marchuk's immunological model”, Matematicheskoe Modelirovanie, 7:3 (1995), 66–74 (in Russian)
[2] Belykb L. N., Analysis of Mathematical Models in Immunology, Nauka, M., 1988 (in Russian)
[3] G. V. Demidenko, On the second Lyapunov method for delay equations, Preprint No 289, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2014, 20 pp. (in Russian)
[4] G. V. Demidenko, I. I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestnik Novosibirsk Univ. Ser. Mat. Mekh. Inform., 5:3 (2005), 20–28 (in Russian)
[5] G. V. Demidenko, I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836
[6] G. V. Demidenko, I. I. Matveeva, “On estimates of solutions to systems of differential equations of neutral type with periodic coefficients”, Siberian Math. J., 55:5 (2014), 866–881
[7] G. V. Demidenko, I. I. Matveeva, M. A. Skvortsova, “Estimates for solutions to neutral differential equations with periodic coefficients of linear terms”, Siberian Math. J., 60:5 (2019), 828–841
[8] Gyori I., Pertsev N. V., “On the stability of equilibrium states of functional-differential equations of retarded type having the mixed monotonicity property”, Soviet Mathematics. Doklady, 36:3 (1988), 404–407
[9] Marchuk G.I., Basic Mathematical Model of Viral Disease, Preprint, Computational Centre of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1975, 22 pp. (in Russian)
[10] G. I. Marchuk, Mathematical Models in Immunology. Computational Methods and Experiments, 3d edition, Nauka, M., 1991 (in Russian)
[11] I. I. Matveeva, “On exponential stability of solutions to periodic neutral-type systems”, Siberian Math. J., 58:2 (2017), 264–270
[12] Matveeva I.I., “Estimates for solutions to a class of nonautonomous systems of neutral type with unbounded delay”, Siberian Math. J., 62:3 (2021), 468–481
[13] Pertsev N. V., “Stability analysis of a stationary solution to a modified antiviral immune response model”, Vestnik Omskogo Universiteta, 1998, no. 3, 19–21 (in Russian)
[14] A. A. Romanyukha, S. G. Rudnev, “A variational principle for modeling infection immunity by the example of pneumonia”, Matematicheskoe Modelirovanie, 13:8 (2001), 65–84 (in Russian)
[15] M. A. Skvortsova, “Asymptotic properties of solutions in a model of antibacterial immune response”, Sib. Elektron. Mat. Izv., 15 (2018), 1198–1215 (in Russian)
[16] Skvortsova M. A., “Estimates of solutions in the model of interaction of populations with several delays”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 188, 2020, 84–105 (in Russian)
[17] Skvortsova M. A., “Estimates of solutions for a biological model”, Siberian Adv. Math., 32:4 (2022), 310–327
[18] M. A. Skvortsova, T. Yskak, “Asymptotic behavior of solutions in one predator-prey model with delay”, Siberian Math. J., 62:2 (2021), 324–336
[19] Skvortsova M. A., Yskak T., “Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms”, J. Appl. Ind. Math., 16:4 (2022), 800–808
[20] Hartman Ph., Ordinary Differential Equations, John Wiley Sons, New York-London-Sydney, 1964
[21] D. Ya. Khusainov, A. F. Ivanov, A. T. Kozhametov, “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay”, Differ. Equ, 41:8 (2005), 1196–1200
[22] C. T. H. Baker, G. A. Bocharov, “Computational aspects of time-lag models of Marchuk type that arise in immunology”, Russian J. Numer. Anal. Math. Modelling, 20:3 (2005), 247–262
[23] S. V. Baranovsky, A. Ya. Bomba, S. I. Lyashko, “Generalization of the antiviral immune response model for complex consideration of diffusion perturbations, body temperature response, and logistic antigen population dynamics”, Cybernet. Systems Anal., 58:4 (2022), 576–592
[24] M. Bershadsky, M. Chirkov, A. Domoshnitsky, S. Rusakov, I. Volinsky, “Distributed control and the Lyapunov characteristic exponents in the model of infectious diseases”, Complexity, 2019 (2019), 1–12
[25] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130
[26] G. V. Demidenko, I. I. Matveeva, “The second Lyapunov method for time-delay systems”, Functional Differential Equations and Applications, Springer Proceedings in Mathematics and Statistics, 379, eds. Eds. A. Domoshnitsky, A. Rasin, S. Padhi, Springer Nature, Singapore, 2021, 145–167
[27] U. Forys, “Stability and bifurcations for the chronic state in Marchuk's model of an immune system”, J. Math. Anal. Appl., 352:2 (2009), 922–942
[28] N. A. Karatueva, R. V. Kharchenko, “Problems of control for immunological models”, Nonlmear Anal. Real World Appl., 7:4 (2006), 829–840
[29] V. L. Kharitonov, Time-Delay Systems. Lyapunov Functionals and Matrices, Birkhauser/Springer, New York, 2013
[30] V. L. Kharitonov, D. Hinrichsen, “Exponential estimates for time delay systems”, Systems Control Lett., 53:5 (2004), 395–405
[31] G. P. Kuznetsova, “The inverse problem for the Marchuk immunologic “simplest model””, Dalnevost. matem. zhurn., 4:1 (2003), 134–140
[32] V. P. Martsenyuk, “On stability of immune protection model with regard for damage of target organ: the degenerate Liapunov functionals method”, Cybernet. Systems Anal., 40:1 (2004), 126–136
[33] S. Mondie, V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273
[34] M. A. Skvortsova, “Asymptotic properties of solutions to a system describing the spread of avian influenza”, Sib. Elektron. Mat. Izv., 13 (2016), 782–798
[35] M. Skvortsova, “Asymptotic properties of solutions in Marchuk's basic model of disease”, Fund. Differ. Equ, 24:3-4 (2017), 127–135
[36] I. Volinsky, A. Domoshnitsky, M. Bershadsky, R. Shklyar, “Marchuk's models of infection diseases: new developments”, Functional Differential Equations and Applications, Springer Proceedings in Mathematics and Statistics, 379, eds. A. Domoshnitsky, A. Rasin, S. Padhi, Springer Nature, Singapore, 2021, 131–143
[37] T. Yskak, “Stability of solutions to one class of neutral type systems of linear autonomous equations with distributed delay”, Lobachevskii J. Math., 42:14 (2021), 3561–3566