Stability of solutions of delay differential equations
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 208-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider a class of systems of linear differential equations with infinite distributed delay and periodic coefficients. We use the Lyapunov–Krasovskii functional and obtain sufficient conditions for exponential stability of the zero solution, find conditions on perturbation of the coefficients of the system that guarantee preservation of exponential stability, and establish estimates for the norms of solutions of the initial and perturbed systems that characterize exponential decay at infinity.
@article{MT_2023_26_1_a10,
     author = {T. Yskak},
     title = {Stability of solutions of delay differential equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {208--218},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a10/}
}
TY  - JOUR
AU  - T. Yskak
TI  - Stability of solutions of delay differential equations
JO  - Matematičeskie trudy
PY  - 2023
SP  - 208
EP  - 218
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a10/
LA  - ru
ID  - MT_2023_26_1_a10
ER  - 
%0 Journal Article
%A T. Yskak
%T Stability of solutions of delay differential equations
%J Matematičeskie trudy
%D 2023
%P 208-218
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a10/
%G ru
%F MT_2023_26_1_a10
T. Yskak. Stability of solutions of delay differential equations. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 208-218. https://geodesic-test.mathdoc.fr/item/MT_2023_26_1_a10/

[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatulliia, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991

[2] G. V. Demidenko, I. I. Matveeva, “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. matem., mekh., inform., 5:3 (2005), 20–28

[3] Yu. F. Dolgii, Ustoichivost periodicheskikh differentsialno-raznostnykh uravnenii, Izd-vo Ural. un-ta, Ekaterinburg, 1996

[4] D. G. Korenevskii, “Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov”, Algebraicheskie kriterii, Naukova dumka, Kiev, 1989

[5] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959

[6] I. I. Matveeva, “Otsenki eksponentsialnogo ubyvaniya reshenii odnogo klassa nelineinykh sistem neitralnogo tipa s periodicheskimi koeffitsientami”, Zh. vychisl. mashem. i matem. fiz., 60:4 (2020), 612–620

[7] A. D. Myshkis, Lineinye differentsialnye uravneniya, s zapazdyvayuschim argumentom, Izdanie 3-e, Lenand, M., 2014

[8] T. L. Sabatulshna, V. V. Malygina, “Nekotorye priznaki ustoichivosti lineinykh avtonomnykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2007, no. 6, 55–63

[9] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[10] K. M. Chudnnov, “Funktsionalno-differentsialnye neravenstva i otsenka funktsii Koshi uravneniya s posledeistviem”, Izv. vuzov. Matem., 2014, no. 4, 52–61

[11] T. Yskak, “Ustoichivost reshenii sistem nelineinykh differentsialnykh uravnenii neitralnogo tipa s raspredelennym zapazdyvaniem”, Mat. zametki SVFU, 29:3 (2022), 93–107

[12] L. E. Elsgolts, S. B. Norkin, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[13] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer-Verl., New York, 2012

[14] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130

[15] A. V. Egorov, C. Cuvas, S. Mondie, “Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays”, Automatica J. IFAC, 80 (2017), 218–224

[16] T. Faria, “Stability for Nonautonomous Linear Differential Systems with Infinite Delay”, J. Dynam. Differential Equations, 34 (2022), 747–773

[17] M. I. Gil', Stability of neutral functional differential equations, Atlantis Stud. Differ. Equ., 3, Atlantis Press, Paris, 2014

[18] L. Hatvani, “Asymptotic stability of non-autonomous functional differential equations with distributed delays”, Electron. J. Differential Equations, 2016:302 (2016), 1–16

[19] V. B. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functional differential equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999