Geometric Symbol Calculus for Pseudodifferential Operators.~II
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 176-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection on a manifold allows us to define the full symbol of a pseudodifferential operator in an invariant way. The latter is called the geometric symbol to distinguish it from the coordinate-wise symbol. The traditional calculus is developed for geometric symbols: an expression of the geometric symbol through the coordinate-wise symbol, formulas for the geometric symbol of the product of two operators, and of the dual operator. The second part considers operators on vector bundles.
@article{MT_2005_8_1_a5,
     author = {V. A. Sharafutdinov},
     title = {Geometric {Symbol} {Calculus} for {Pseudodifferential} {Operators.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {176--201},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a5/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Geometric Symbol Calculus for Pseudodifferential Operators.~II
JO  - Matematičeskie trudy
PY  - 2005
SP  - 176
EP  - 201
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a5/
LA  - ru
ID  - MT_2005_8_1_a5
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Geometric Symbol Calculus for Pseudodifferential Operators.~II
%J Matematičeskie trudy
%D 2005
%P 176-201
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a5/
%G ru
%F MT_2005_8_1_a5
V. A. Sharafutdinov. Geometric Symbol Calculus for Pseudodifferential Operators.~II. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 176-201. https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a5/

[1] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov. I”, Mat. trudy, 7:2 (2004), 159–206 | MR