Behavior of Arithmetic Invariants for a~Class of Elliptic Curves in Cyclotomic Γ-Extensions
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 122-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of the main arithmetic invariants of elliptic curves with complex multiplication in cyclotomic Γ-extensions. We consider the curves of CM-type which are defined over the field of rational numbers and possess nondegenerate nonsupersingular reduction modulo a prime p, where p2.
@article{MT_2005_8_1_a3,
     author = {I. S. Rakhimov},
     title = {Behavior of {Arithmetic} {Invariants} for {a~Class} of {Elliptic} {Curves} in {Cyclotomic} $\Gamma${-Extensions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a3/}
}
TY  - JOUR
AU  - I. S. Rakhimov
TI  - Behavior of Arithmetic Invariants for a~Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions
JO  - Matematičeskie trudy
PY  - 2005
SP  - 122
EP  - 134
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a3/
LA  - ru
ID  - MT_2005_8_1_a3
ER  - 
%0 Journal Article
%A I. S. Rakhimov
%T Behavior of Arithmetic Invariants for a~Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions
%J Matematičeskie trudy
%D 2005
%P 122-134
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a3/
%G ru
%F MT_2005_8_1_a3
I. S. Rakhimov. Behavior of Arithmetic Invariants for a~Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 122-134. https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a3/

[1] Bashmakov M. I., “Kogomologii abelevykh mnogoobrazii”, Uspekhi mat. nauk, 27:6 (168) (1972), 25–66 | MR | Zbl

[2] Bashmakov M. L., Al-Nader N. Sh., “Povedenie krivoi $x^3+y^3=1$ v krugovom $\Gamma$-rasshirenii”, Mat. sb., 90 (132):1 (1973), 117–130 | MR | Zbl

[3] Bashmakov M. L., Kurochkpn A. S., “Ratsionalnye tochki na odnoi modulyarnoi krivoi v krugovom 2-rasshirenii”, Zap. nauch. seminarov LOMI, 57, 1976, 5–7 | Zbl

[4] Kassels Dzh., “Diofantovy uravneniya so spetsialnym rassmotreniem ellipticheskikh krivykh”, Matematika, 12:1 (1968), 113–160; 2, 1–48

[5] Kokh X., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[6] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. mat., 36:2 (1972), 267–327 | MR

[7] Kuzmin L. V., “Kogomologicheskaya razmernost nekotorykh grupp Galua”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 487–495 | MR

[8] Kurchanov P. F., “Ellipticheskie krivye beskonechnogo ranga nad $\Gamma$-rasshireniyami”, Mat. sb., 90 (132) (1973), 320–324 | Zbl

[9] Mazur B., “Ratsionalnye tochki abelevykh mnogoobrazii nad bashnyami chislovykh polei”, Matematika, 17:2 (1973), 3–57 ; 3, 114–136 | MR | Zbl | Zbl

[10] Manii Yu. I., “Krugovye polya i modulyarnye krivye”, Uspekhi mat. nauk, 26:6 (1971), 7–71 | MR

[11] Rakhimov I. S., “O gruppe Zelmera odnoi ellipticheskoi krivoi”, Strukturnye svoistva algebraicheskikh sistem, Vyp. 2, KBGU, Nalchik, 1985, 81–85 | MR

[12] Rakhimov I. S., “Odin primer polnogo vychisleniya arifmeticheskikh invariantov ellipticheskoi krivoi”, Vsesoyuz. konf. «Teoriya chisel i ee prilozheniya», Tez. dokl. (Tbilisi), 1985

[13] Rakhimov I. S., “O pole opredeleniya tochek $p$-to poryadka ellipticheskikh krivykh s kompleksnym umnozheniem”, Uzbekskii mat. zhurn., 5–6 (2000), 62–65 | MR

[14] Rakhimov I. S., “O lokalnom pole opredeleniya tochek $p$-go poryadka ellipticheskikh krivykh”, Uzbekskii mat. zhurn., 1–2 (2001), 41–44 | MR

[15] Rakhimov I. S., “Ob arifmeticheskikh invariantakh nekotorogo klassa ellipticheskikh krivykh”, Mat. trudy, 6:1 (2003), 155–168 | MR | Zbl

[16] Serr Zh.-P., Teit Dzh., “Khoroshaya reduktsiya abelevykh mnogoobrazii”, Matematika, 15:5 (1971), 140–165 | Zbl

[17] Faddeev D. K., “O gruppe klassov divizorov na nekotorykh algebraicheskikh krivykh”, Dokl. AN SSSR, 136:2 (1961), 296–298 | MR | Zbl

[18] Faddeev D. K., “Ob invariantakh divizorov dlya krivykh $x^\kappa(1-x)=y^l$ v $l$-adicheskom krugovom pole”, Tr. Mat. in-ta im. V. A. Steklova, 64, 1961, 284–293 | MR | Zbl

[19] Shafarevich I. R., “Obschii zakon vzaimnosti”, Mat. sb., 26:1 (1950), 113–146 | Zbl

[20] Coates J., “Infinite descent on elliptic curves with complex multiplication”, Progress in Math., 35 (1983), 107–137 | MR | Zbl

[21] Ferrero V., Washington L., “The Iwasawa invariant $\mu_p$ vanishes for abelian number fields”, Ann. Math. (2), 109 (1979), 377–395 | DOI | MR | Zbl

[22] Perrin-Riou B., “Groupe de Selmer d'une courbe elliptique a multiplication complexe”, Compositio Math., 43 (1983), 387–417 | MR

[23] Perrin-Riou B., “Descente infinie et hauteur p-adique sur les courbes elliptiques a multiplication complexe”, Invent. Math., 70 (1983), 369–398 | DOI | MR | Zbl

[24] Rubin K., Wiles A., “Mordell–Weil groups of elliptic curves over cyclotomic fields”, Progress in Math., 26 (1982), 237–254 | MR | Zbl

[25] Tate J., “Duality theorems in Galois cohomology over number fields”, Proc. Int. Congr. Math. Stockholm, 1963, 288–295 | MR | Zbl

[26] Tate J., “The arithmethic of elliptic curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl