Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2005_8_1_a0, author = {S. P. Kovalyov}, title = {Mathematical {Foundations} of {Computer} {Arithmetics}}, journal = {Matemati\v{c}eskie trudy}, pages = {3--42}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2005}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a0/} }
S. P. Kovalyov. Mathematical Foundations of Computer Arithmetics. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 3-42. https://geodesic-test.mathdoc.fr/item/MT_2005_8_1_a0/
[1] Bauer F. L., Gooz G., Informatika, Vvodnyi kurs, t. 1–2, Mir, M., 1990 | MR
[2] Bochvar D. A., Finn V. K., “O mnogoznachnykh logikakh, dopuskayuschikh formalizatsiyu antinomii. I”, Issledovaniya po matematicheskoi lingvistike, matematicheskoi logike i informatsionnym yazykam, Nauka, M., 1972, 238–295
[3] Vazhennn A. P., “Parallelnye vychisleniya s dinamicheskoi dlinoi operandov: problemy i perspektivy”, Sistemnaya informatika, 7, Nauka, Novosibirsk, 2000, 225–274
[4] Voevodin V. V., “Otobrazhenie problem vychislitelnoi matematiki na arkhitekturu vychislitelnykh sistem”, Vychislitelnye metody i programmirovanie, 1 (2000), 37–44
[5] Gashkov S. B., Chubarnkov V. N., Arifmetika. Algoritmy. Slozhnost vychislenii, Vysshaya shkola, M., 2000
[6] Karpenko A. S., Logiki Lukasevicha i prostye chisla, Nauka, M., 2000 | MR
[7] Kensler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR
[8] Kovalëv S. P., “Analiticheskie modeli mashinnoi arifmetiki”, Sib. zhurn. ind. mat., 6:3 (2003), 88–102 | MR
[9] Kovalëv S. P., “Logika Lukasevicha kak arkhitekturnaya model arifmetiki”, Sib. zhurn. ind. mat., 6:4 (2003), 32–50 | MR
[10] Tarskni A., Vvedenie v logiku i metodologiyu deduktivnykh nauk, IP , Birobidzhan, 2000
[11] Uorren G., Algoritmicheskie tryuki dlya programmistov, Izd-vo , M., 2003
[12] Yablonskii S. V., Diskretnaya matematika i matematicheskie voprosy kibernetiki, Nauka, M., 1974, 9–66
[13] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. Mat. in-ta im. V. A. Steklova, 51, 1958, 5–142 | Zbl
[14] Beavers G., “Automated theorem proving for Lukasiewicz logics”, Studia Logica, 52:2 (1993), 183–195 | DOI | MR | Zbl
[15] Evans T., Schwartz P. B., “On Slupecki $T$-functions”, J. Symbolic Logic, 23 (1958), 267–270 | DOI | MR
[16] Kahan W., Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic, Berkeley, 1996; http://www.cs.berkeley.edu/\allowbreakw̃kahan/ieee754status/IEEE754.pdf
[17] McNaughton R., “A theorem about infinite-valued sentential logic”, J. Symbolic Logic, 16 (1951), 1–13 | DOI | MR | Zbl
[18] Onneweer S. P., Kerkhoff H. G., “High-radix current-mode CMOS circuits based on the truncated-difference operator”, Proc. of the 17th Int. Symp. on Multiple-Valued Logic, IEEE, Boston, 1987, 188–195
[19] Rosenberg I. G., “Completeness properties of multiple-valued logic algebras”, Computer Science and Multiple-Valued Logic, North-Holland, Amsterdam, 1977, 144–186