On Coloring Polygon-Circle Graphs with Clique Number~2
Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 197-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In his paper (see [1]) A. V. Kostochka proved that the maximum of chromatic numbers of circle graphs (intersection graphs of chords inscribed in a circle) with clique number 2 is at most 5. A. A. Ageev established in 1995 (see [2]) that the maximum of chromatic numbers of this class of graphs is at least 5. So, he proved that the upper bound obtained by A. V. Kostochka is the best possible. From the above-mentioned results of A. A. Ageev it follows that χ(G)5, where χ(G) is the maximum of chromatic numbers of all polygon-circle graphs (intersection graphs of (convex) polygons inscribed in a circle) with clique number 2. In this article we prove that χ(G)5 and, thus, χ(G)=5.
@article{MT_2000_3_1_a5,
     author = {R. N. Shmatkov},
     title = {On {Coloring} {Polygon-Circle} {Graphs} with {Clique} {Number~2}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {197--211},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a5/}
}
TY  - JOUR
AU  - R. N. Shmatkov
TI  - On Coloring Polygon-Circle Graphs with Clique Number~2
JO  - Matematičeskie trudy
PY  - 2000
SP  - 197
EP  - 211
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a5/
LA  - ru
ID  - MT_2000_3_1_a5
ER  - 
%0 Journal Article
%A R. N. Shmatkov
%T On Coloring Polygon-Circle Graphs with Clique Number~2
%J Matematičeskie trudy
%D 2000
%P 197-211
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a5/
%G ru
%F MT_2000_3_1_a5
R. N. Shmatkov. On Coloring Polygon-Circle Graphs with Clique Number~2. Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 197-211. https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a5/