Resolvent Estimates for Ordinary Differential Operators of Mixed Type
Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 144-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider the problem \begin{equation} Hu+\lambda u=f(t), \quad t\in (0,1), \tag{1} \end{equation} where λ is a complex parameter and H stands for an ordinary differential operator of order l2 defined by the differential expression $$ Hu=k(t)u^{(l)}(t)+a(t)u^{(l-1)}(t)+\sum_{j=0}^{l-2}a_j(t)u^{(j)}(t), $$ with u(j)(t)=dju(t)dtj, and the collection of boundary conditions $$ l_1u=u^{(p)}(1)+\sum_{\nu=0}^{p-1}\alpha_{\nu}u^{(\nu)}(1)=0, \quad l_0u=u^{(q)}(0)+\sum_{\nu=0}^{q-1}\beta_{\nu}u^{(\nu)}(0)=0. $$ Using a priori bounds, we prove existence and uniqueness theorems of boundary value problems for linear ordinary differential equations and study dependence of solutions on a parameter. The peculiarity of the problem lies in the fact that the leading coefficient in the equation is of an arbitrary sign on the interval (0,1).
@article{MT_2000_3_1_a4,
     author = {A. V. Chueshov},
     title = {Resolvent {Estimates} for {Ordinary} {Differential} {Operators} of {Mixed} {Type}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {144--196},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a4/}
}
TY  - JOUR
AU  - A. V. Chueshov
TI  - Resolvent Estimates for Ordinary Differential Operators of Mixed Type
JO  - Matematičeskie trudy
PY  - 2000
SP  - 144
EP  - 196
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a4/
LA  - ru
ID  - MT_2000_3_1_a4
ER  - 
%0 Journal Article
%A A. V. Chueshov
%T Resolvent Estimates for Ordinary Differential Operators of Mixed Type
%J Matematičeskie trudy
%D 2000
%P 144-196
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a4/
%G ru
%F MT_2000_3_1_a4
A. V. Chueshov. Resolvent Estimates for Ordinary Differential Operators of Mixed Type. Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 144-196. https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a4/