Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras
Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a symplectic structure determined on a Jordan algebra induces a symplectic structure on the adjoint Lie KKT-algebra. It is proven that Jordan bialgebras of some type defined on semisimple finite-dimensional Jordan algebras are triangular Jordan bialgebras.
@article{MT_2000_3_1_a1,
     author = {V. N. Zhelyabin},
     title = {Jordan {D-Bialgebras} and {Symplectic} {Forms} on {Jordan} {Algebras}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a1/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
TI  - Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras
JO  - Matematičeskie trudy
PY  - 2000
SP  - 38
EP  - 47
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a1/
LA  - ru
ID  - MT_2000_3_1_a1
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%T Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras
%J Matematičeskie trudy
%D 2000
%P 38-47
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a1/
%G ru
%F MT_2000_3_1_a1
V. N. Zhelyabin. Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras. Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 38-47. https://geodesic-test.mathdoc.fr/item/MT_2000_3_1_a1/