On Certain Torsion Groups Saturated with Finite Simple Groups
Matematičeskie trudy, Tome 1 (1998) no. 1, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group G is said to be saturated with groups in a set X provided that every finite subgroup KG can be embedded in G into a subgroup L isomorphic to a group in X. It is shown that a torsion group with a finite dihedral Sylow 2-subgroup which is saturated with finite simple nonabelian groups is locally finite and isomorphic to L2(P) (Theorem 1.1). It is proven that a torsion group saturated with finite Ree groups is locally finite and isomorphic to a Ree group (Theorem 1.2).
@article{MT_1998_1_1_a5,
     author = {A. K. Shlepkin},
     title = {On {Certain} {Torsion} {Groups} {Saturated} with {Finite} {Simple} {Groups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1998},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/MT_1998_1_1_a5/}
}
TY  - JOUR
AU  - A. K. Shlepkin
TI  - On Certain Torsion Groups Saturated with Finite Simple Groups
JO  - Matematičeskie trudy
PY  - 1998
SP  - 129
EP  - 138
VL  - 1
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MT_1998_1_1_a5/
LA  - ru
ID  - MT_1998_1_1_a5
ER  - 
%0 Journal Article
%A A. K. Shlepkin
%T On Certain Torsion Groups Saturated with Finite Simple Groups
%J Matematičeskie trudy
%D 1998
%P 129-138
%V 1
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MT_1998_1_1_a5/
%G ru
%F MT_1998_1_1_a5
A. K. Shlepkin. On Certain Torsion Groups Saturated with Finite Simple Groups. Matematičeskie trudy, Tome 1 (1998) no. 1, pp. 129-138. https://geodesic-test.mathdoc.fr/item/MT_1998_1_1_a5/