Some new results for the generalized bivariate Fibonacci and Lucas polynomials
Mathematica Moravica, Tome 28 (2024) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, new identities are obtained by using the generalized bivariate Fibonacci and Lucas polynomials. Firstly, several binomial summations and the closed formulas for summation of powers are investigated for these polynomials. Also, general summation formulas, different generating functions, and relations of these polynomials are presented.
Mots-clés : Binomial, Fibonacci polynomials, generating function, Lucas polynomials.
@article{MM3_2024_28_1_a7,
     author = {Nazmiye Y{\i}lmaz},
     title = {Some new results for the generalized bivariate {Fibonacci} and {Lucas} polynomials},
     journal = {Mathematica Moravica},
     pages = {97 - 108},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a7/}
}
TY  - JOUR
AU  - Nazmiye Yılmaz
TI  - Some new results for the generalized bivariate Fibonacci and Lucas polynomials
JO  - Mathematica Moravica
PY  - 2024
SP  - 97 
EP  -  108
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a7/
ID  - MM3_2024_28_1_a7
ER  - 
%0 Journal Article
%A Nazmiye Yılmaz
%T Some new results for the generalized bivariate Fibonacci and Lucas polynomials
%J Mathematica Moravica
%D 2024
%P 97 - 108
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a7/
%F MM3_2024_28_1_a7
Nazmiye Yılmaz. Some new results for the generalized bivariate Fibonacci and Lucas polynomials. Mathematica Moravica, Tome 28 (2024) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a7/